Skip to main content

Targeting Transforming Growth Factor-β in Metastasis: In Vitro and In Vivo Mechanisms

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Transforming growth factor-β (TGF-β) controls tissue homeostasis and mediates the repair response to tissue injury. While tumors espape from TGF-β’s homeostatic function, many metastatic cancers coopt the tissue repair function to enhance their invasive/metastatic phenotype. These effects are due to an altered responsiveness of the tumor cells themselves (tumor cell autonomous effects) or to actions of tumor-associated TGF-β on the supporting host cell infrastructure. This discovery has resulted in great enthusiasm for developing TGF-β antagonists (TβA) for the treatment of metastatic cancer. Proof of concept has been provided by preclinical studies utilizing TGF-β neutralizing antibodies, TGF-β antisense molecules, soluble TGF-β receptors (TβR), and selective and potent chemical inhibitors of the TβR kinases. In vivo, TβA appears to impact on both cell autonomous and host cell effects of TGF-β. However, their antitumor activity has been modest in magnitude and limited to specific models, suggesting that only select tumors may be clinically susceptible to treatment with TβA. Moreover, as the oncogenic role of TGF-β signaling appears to come into play at a relatively late stage of tumor progression, blocking this pathway will likely have to be combined with inhibitors of oncogenes that drive tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 1993;8(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Wakefield LM, Smith DM, Flanders KC, Sporn MB. Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. J Biol Chem 1988; 263:7646–7654.

    CAS  PubMed  Google Scholar 

  3. Wakefield LM, Smith DM, Masui T, Harris CC, Sporn MB. Distribution and modulation of the cellular receptor for transforming growth factor-beta. J Cell Biol 1987;105(2):965–975.

    Article  CAS  PubMed  Google Scholar 

  4. Massagué J, Chen Y-G. Controlling TGF-β signaling. Genes 2000;14:627–644.

    Google Scholar 

  5. Cui W, Fowlis DJ, Cousins FM, et al. Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev 1995;9(8):945–955.

    Article  CAS  PubMed  Google Scholar 

  6. Glick AB, Kulkarni AB, Tennenbaum T, et al. Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 1993;90(13):6076–6080.

    Article  CAS  PubMed  Google Scholar 

  7. Glick AB, Weinberg WC, Wu IH, Quan W, Yuspa SH. Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb [published erratum appears in Cancer Res 1997 May 15;57(10):2079]. Cancer Res 1996;56(16):3645–3650.

    CAS  PubMed  Google Scholar 

  8. Ge R, Rajeev V, Subramanian G, et al. Selective inhibitors of type I receptor kinase block cellular transforming growth factor-beta signaling. Biochem Pharmacol 2004;68(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  9. Xie W, Mertens JC, Reiss DJ, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 2002;62(2):497–505.

    CAS  PubMed  Google Scholar 

  10. Xie W, Rimm DL, Lin Y, Shih WJ, Reiss M. Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J 2003;9(4):302–312.

    Article  CAS  PubMed  Google Scholar 

  11. Xie W, Bharathy S, Kim D, Haffty BG, Rimm DL, Reiss M. Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray analysis. Oncol Res 2003;14(2):61–73.

    CAS  PubMed  Google Scholar 

  12. Sterner-Kock A, Thorey IS, Koli K, et al. Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev 2002;16(17):2264–2273.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts AB, Piek E, Bottinger EP, Ashcroft G, Mitchell JB, Flanders KC. Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest 2001;120(1 Suppl):43S–47S.

    Article  CAS  PubMed  Google Scholar 

  14. Barcellos-Hoff MH. How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 1998;150(5 Suppl):S109–S120.

    Article  CAS  PubMed  Google Scholar 

  15. Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. N Engl J Med 1994;331:1286–1292.

    Article  CAS  PubMed  Google Scholar 

  16. Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes Infect 1999;1(15):1349–1365.

    Article  CAS  PubMed  Google Scholar 

  17. Sheppard D. Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev 2005;24(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  18. Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96(3):319–328.

    Article  CAS  PubMed  Google Scholar 

  19. Fynan TM, Reiss M. Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncogenesis 1993;4:493–540.

    CAS  PubMed  Google Scholar 

  20. Reiss M, Barcellos-Hoff MH. The role of transforming growth factor-β in breast cancer-a working hypothesis. Breast Cancer Res Treatm 1997;45:81–95.

    Article  CAS  Google Scholar 

  21. Gold LI. The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 1999;10(4):303–360.

    CAS  PubMed  Google Scholar 

  22. Reiss M. TGFβ and cancer. Microbes Infect 1999;1(15):1327–1347.

    Article  CAS  PubMed  Google Scholar 

  23. Garrigue-Antar L, Munoz-Antonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M. Missense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells. Cancer Res 1995;55(18):3982–3987.

    CAS  PubMed  Google Scholar 

  24. Garrigue-Antar L, Souza RF, Vellucci VF, Meltzer SJ, Reiss M. Loss of transforming growth factor-beta type II receptor gene expression in primary human esophageal cancer. Lab Invest 1996;75(2):263–272.

    CAS  PubMed  Google Scholar 

  25. de Jonge RR, Garrigue-Antar L, Vellucci VF, Reiss M. Frequent inactivation of the transforming growth factor beta type II receptor in small-cell lung carcinoma cells. Oncol Res 1997;9(2):89–98.

    PubMed  Google Scholar 

  26. Chen T, Carter D, Garrigue-Antar L, Reiss M. Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 1998;58(21):4805–4810.

    CAS  PubMed  Google Scholar 

  27. De M, Yan W, de Jonge RR, Garrigue-Antar L, Vellucci VF, Reiss M. Functional characterization of transforming growth factor beta type II receptor mutants in human cancer. Cancer Res 1998;58(9):1986–1992.

    CAS  PubMed  Google Scholar 

  28. Chen T, de Vries EG, Hollema H, et al. Structural alterations of transforming growth factor-beta receptor genes in human cervical carcinoma. Int J Cancer 1999;82(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  29. Chen T, Yan W, Wells RG, et al. Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int J Cancer 2001;93(5):653–661.

    Article  CAS  PubMed  Google Scholar 

  30. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342(18):1350–1358.

    Article  CAS  PubMed  Google Scholar 

  31. Kim SJ, Im YH, Markowitz SD, Bang YJ. Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 2000;11(1–2):159–168.

    Article  CAS  PubMed  Google Scholar 

  32. Downing JR. TGF-beta signaling, tumor suppression, and acute lymphoblastic leukemia. N Engl J Med 2004;351(6):528–530.

    Article  CAS  PubMed  Google Scholar 

  33. Wolfraim LA, Fernandez TM, Mamura M, et al. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 2004;351(6):552–559.

    Article  CAS  PubMed  Google Scholar 

  34. Parekh TV, Gama P, Wen X, et al. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Res 2002;62(10):2778–2790.

    CAS  PubMed  Google Scholar 

  35. Wilentz RE, Su GH, Dai JL, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas: a new marker of DPC4 inactivation. Am J Pathol 2000;156(1):37–43.

    CAS  PubMed  Google Scholar 

  36. Wilentz RE, Iacobuzio-Donahue CA, Argani P, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res 2000;60(7):2002–2006.

    CAS  PubMed  Google Scholar 

  37. Korchynskyi O, Landstrom M, Stoika R, et al. Expression of Smad proteins in human colorectal cancer. Int J Cancer 1999;82(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  38. Yan W, Vellucci VF, Reiss M. Smad protein expression and activation in transforming growth factor-beta refractory human squamous cell carcinoma cells. Oncol Res 2000;12(3):157–167.

    CAS  PubMed  Google Scholar 

  39. Haddow S, Fowlis DJ, Parkinson K, Akhurst RJ, Balmain A. Loss of growth control by TGF-beta occurs at a late stage of mouse skin carcinogenesis and is independent of ras gene activation. Oncogene 1991;6(8):1465–1470.

    CAS  PubMed  Google Scholar 

  40. Stoler AB, Stenback F, Balmain A. The conversion of mouse skin squamous cell carcinomas to spindle cell carcinomas is a recessive event. J Cell Biol 1993;122(5):1103–1117.

    Article  CAS  PubMed  Google Scholar 

  41. Portella G, Liddell J, Crombie R, et al. Molecular mechanisms of invasion and metastasis during mouse skin tumour progression. Invasion Metastasis 1994;14(1–6):7–16.

    CAS  PubMed  Google Scholar 

  42. Portella G, Cumming SA, Liddell J, et al. Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ 1998;9(5):393–404.

    CAS  PubMed  Google Scholar 

  43. Akhurst RJ, Balmain A. Genetic events and the role of TGF beta in epithelial tumour progression. J Pathol 1999;187(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  44. Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 2002;4(7):487–494.

    Article  CAS  PubMed  Google Scholar 

  45. Hulboy DL, Matrisian LM, Crawford HC. Loss of JunB activity enhances stromelysin 1 expression in a model of the epithelial-to-mesenchymal transition of mouse skin tumors. Mol Cell Biol 2001; 21(16):5478–5487.

    Article  CAS  PubMed  Google Scholar 

  46. Piek E, Roberts AB. Suppressor and oncogenic roles of transforming growth factor-beta and its signaling pathways in tumorigenesis. Adv Cancer Res 2001;83:1–54.

    Article  CAS  PubMed  Google Scholar 

  47. Boyer AS, Erickson CP, Runyan RB. Epithelial-mesenchymal transformation in the embryonic heart is mediated through distinct pertussis toxin-sensitive and TGFbeta signal transduction mechanisms. Dev Dyn 1999;214(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  48. Brown CB, Boyer AS, Runyan RB, Barnett JV. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 1999;283(5410):2080–2082.

    Article  CAS  PubMed  Google Scholar 

  49. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994;127(6 Pt 2):2021–2036.

    Article  CAS  PubMed  Google Scholar 

  50. Piek E, Moustakas A, Kurisaki A, Heldin C-H, ten Dijke P. TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 1999;112(Pt 24):4557–4568.

    CAS  PubMed  Google Scholar 

  51. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12(1):22–29.

    Article  CAS  PubMed  Google Scholar 

  52. Brown KA, Aakre ME, Gorska AE, et al. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 2004;6(3):R215–R231.

    Article  CAS  PubMed  Google Scholar 

  53. Ge R, Rajeev V, Ray P, et al. Inhibition of mouse mammary tumor growth and metastasis by selective transforming growth factor-type I receptor kinase blockade. Proc Am Assoc Cancer Res 2005;46:604.

    Google Scholar 

  54. Van den Broecke C, Vleminckx K, De Bruyne G, et al. Morphotypic plasticity in vitro and in nude mice of epithelial mouse mammary cells (NMuMG) displaying an epithelioid (e) or a fibroblastic (f) morphotype in culture. Clin Exp Metastasis 1996;14(3):282–296.

    PubMed  Google Scholar 

  55. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996;10(19):2462–2477.

    Article  CAS  PubMed  Google Scholar 

  56. Böttinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM. Transgenic mice overexpressing a dominant-negative mutant type II Transforming Growth Factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res 1997;57:5564–5570.

    PubMed  Google Scholar 

  57. Li W, Qiao W, Chen L, et al. Squamous cell carcinoma and mammary abscess formation through squamous metaplasia in Smad4/Dpc4 conditional knockout mice. Development 2003;130(24):6143–6153.

    Article  CAS  PubMed  Google Scholar 

  58. Kaverina I, Krylyshkina O, Small JV. Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 2002;34:746–761.

    Article  CAS  PubMed  Google Scholar 

  59. Pagan R, Martin I, Llobera M, Vilaro S. Growth and differentiation of factors inhibit the migratory phenotype of cultured neonatal rat hepatocytes induced by HGF/SF. Exp Cell Res 1997;235(1): 170–179.

    Article  CAS  PubMed  Google Scholar 

  60. Tse WK, Whitley GS, Cartwright JE. Transforming growth factor-beta1 regulates hepatocyte growth factor-induced trophoblast motility and invasion. Placenta 2002;23(10):699–705.

    CAS  PubMed  Google Scholar 

  61. Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL. Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 2004; 279(23):24,505–24,513.

    Article  CAS  PubMed  Google Scholar 

  62. McEarchern JA, Kobie JJ, Mack V, et al. Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer 2001;91(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  63. Subramanian G, Schwarz RE, Higgins L, et al. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype 1. Cancer Res 2004;64(15):5200–5211.

    Article  CAS  PubMed  Google Scholar 

  64. Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998;8(23):1243–1252.

    Article  CAS  PubMed  Google Scholar 

  65. Chen CR, Kang Y, Massagué J, Defective repression of c-myc in breast cancer cell: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 2001; 98(3):992–999.

    Article  CAS  PubMed  Google Scholar 

  66. Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antipro-liferative and migratory responses. Mol Cell Biol 2005;25(18):8108–8125.

    Article  CAS  PubMed  Google Scholar 

  67. Kang Y, He W, Tulley S, et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 2005;102(39):13,909–13,914.

    Article  CAS  PubMed  Google Scholar 

  68. Subramanian G, Reiss M. Differential activation of receptor-associated SMADS maymediate transforming growth factor-beta’s oncogenic effects on human pancreatic cancer cells. Proc Am Assoc Cancer Res 2005;46:941.

    Google Scholar 

  69. Shevde LA, Welch DR. Metastasis suppressor pathways — an evolving paradigm. Cancer Lett 2003;198 (1):1–20.

    Article  CAS  PubMed  Google Scholar 

  70. Welch DR. Technical considerations for studying cancer metastasis in vivo. Clin Exp Metastasis 1997;15(3):272–306.

    Article  CAS  PubMed  Google Scholar 

  71. Welch DR, Fabra A, Nakajima M. Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 1990;87(19):7678–7682.

    Article  CAS  PubMed  Google Scholar 

  72. Ueki N, Nakazato M, Ohkawa T, et al. Excessive production of transforming growth-factor beta 1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim Biophys Acta 1992;1137(2): 189–196.

    Article  CAS  PubMed  Google Scholar 

  73. Ueki N, Ohkawa T, Yokoyama Y, et al. Potentiation of metastatic capacity by transforming growth factor-beta 1 gene transfection. Jpn J Cancer Res 1993;84(6):589–593.

    CAS  PubMed  Google Scholar 

  74. Yin JJ, Selander K, Chirgwin JM, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999;103(2):197–206.

    Article  CAS  PubMed  Google Scholar 

  75. Tang B, Vu M, Booker T, et al. TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 2003;112(7):1116–1124.

    CAS  PubMed  Google Scholar 

  76. Zhang F, Lee J, Lu S, Pettaway CA, Dong Z. Blockade of transforming growth factor-β signaling suppresses progression of androgen-independent human prostate cancer in nude mice. Clin Cancer Res 2005;11(12):4512–4520.

    Article  CAS  PubMed  Google Scholar 

  77. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109(12):1607–1615.

    CAS  PubMed  Google Scholar 

  78. Rowland-Goldsmith MA, Maruyama H, Matsuda K, et al. Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 2002;1(3):161–167.

    CAS  PubMed  Google Scholar 

  79. Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L. A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 1999;59(19):5041–5046.

    CAS  PubMed  Google Scholar 

  80. Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12 cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7(5):469–483.

    Article  CAS  PubMed  Google Scholar 

  81. Aguirre AJ, Bardeesy N, Sinha M, et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003;17(24):3112–3126.

    Article  CAS  PubMed  Google Scholar 

  82. Seton-Rogers SE, Brugge JS. ErbB2 and TGF-beta: a cooperative role in mammary tumor progression? Cell Cycle 2004;3(5):597–600.

    CAS  PubMed  Google Scholar 

  83. Seton-Rogers SE, Lu Y, Hines LM, et al. Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 2004;101(5):1257–1262.

    Article  CAS  PubMed  Google Scholar 

  84. Muraoka RS, Koh Y, Roebuck LR, et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta 1. Mol Cell Biol 2003;23(23):8691–8703.

    Article  CAS  PubMed  Google Scholar 

  85. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massagué J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 2003;100(14):8430–8435.

    Article  CAS  PubMed  Google Scholar 

  86. Muraoka-Cook RS, Kurokawa H, Koh Y, et al. Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metatases of transgenic mammary tumors. Cancer Res 2004; 64(24):9002–9011.

    Article  CAS  PubMed  Google Scholar 

  87. Forrester E, Chytil A, Bierie B, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 2005;65(6):2296–2302.

    Article  CAS  PubMed  Google Scholar 

  88. Minn AJ, Kang Y, Serganova I, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005;115(1):44–55.

    CAS  PubMed  Google Scholar 

  89. van’t Veer LJ, Dai H, van de Vijver MJ, et al. Expression profiling predicts outcome in breast cancer. Breast Cancer Res 2003;5(1):57–58.

    Article  Google Scholar 

  90. Guise TA. Molecular mechanisms of osteolytic bone metastases. Cancer 2000;88(S12): 2892–2898.

    Article  CAS  PubMed  Google Scholar 

  91. Chirgwin JM, Guise TA. Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr 2000;10(2):159–178.

    CAS  PubMed  Google Scholar 

  92. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3(6):537–549.

    Article  CAS  PubMed  Google Scholar 

  93. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436(7050):518–524.

    Article  CAS  PubMed  Google Scholar 

  94. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003;3(6):531–536.

    Article  CAS  PubMed  Google Scholar 

  95. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3(12):1011–1022.

    Article  CAS  PubMed  Google Scholar 

  96. Jinnin M, Ihn H, Tamaki K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-β1-induced extracellular matrix expression. Mol Pharmacol 2006;69:597–607.

    Article  CAS  PubMed  Google Scholar 

  97. Roberts AB, Frolik CA, Anzano MA, Sporn MB. Transforming growth factors from neoplastic and nonneoplastic tissues. Fed Proc 1983;42(9):2621–2626.

    CAS  PubMed  Google Scholar 

  98. Markowitz SD, Roberts AB. Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 1996;7(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  99. Kong FM, Anscher MS, Murase T, Abbott BD, Iglehart JD, Jirtle RL. Elevated plasma transforming growth factor-beta 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg 1995;222(2):155–162.

    Article  CAS  PubMed  Google Scholar 

  100. Sminia P, Barten AD, van Waarde MA, Vujaskovic Z, van Tienhoven G. Plasma transforming growth factor beta levels in breast cancer patients. Oncol Rep 1998;5(2):485–488.

    CAS  PubMed  Google Scholar 

  101. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  102. Bhowmick NA, Chytil A, Plieth D, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004;303(5659):848–851.

    Article  CAS  PubMed  Google Scholar 

  103. Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 1993;92(6):2569–2576.

    Article  CAS  PubMed  Google Scholar 

  104. Hoefer M, Anderer FA. Anti-(transforming growth factor beta) antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice. Cancer Immunol Immunother 1995;41(5):302–308.

    Article  CAS  PubMed  Google Scholar 

  105. Ananth S, Knebelmann B, Gruning W, et al. Transforming growth factor beta 1 is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma. Cancer Res 1999;59(9):2210–2216.

    CAS  PubMed  Google Scholar 

  106. Pinkas J, O’Brien M, Weber WD, Teicher B. Active treatment with a TGF-β neutralizing antibody enhances survival in a syngeneic model of disseminated breast cancer with metastasis to bone. Proc Am Assoc Cancer Res 2005;46:2914.

    Google Scholar 

  107. Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-beta inihibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109(12):1551–1559.

    CAS  PubMed  Google Scholar 

  108. Bandyopadhyay A, Wang L, Lopez-Casillas F, Mendoza V, Yeh IT, Sun L. Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer. Prostate 2005;63(1):81–90.

    Article  PubMed  CAS  Google Scholar 

  109. Park JA, Wang E, Kurt RA, Schluter SF, Hersh EM, Akporiaye ET. Expression of an antisense Transforming Growth Factor-Beta-1 transgene reduces tumorigenicity of EMT6 mammary tumor cells. Cancer Gene Therapy 1997;4(1):42–50.

    CAS  PubMed  Google Scholar 

  110. Fakhrai H, Dorigo O, Shawler DL, et al. Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proc Natl Acad Sci USA 1996;93:2909–2914.

    Article  CAS  PubMed  Google Scholar 

  111. Tzai TS, Lin CI, Shiau AL, Wu CL. Antisense oligonucleotide specific for transforming growth factor-beta 1 inhibit both in vitro and in vivo growth of MBT-2 murine bladder cancer. Anticancer Res 1998;18(3A):1585–1589.

    CAS  PubMed  Google Scholar 

  112. Jachimczak P, Hessdorfer B, Fabel-Schulte K, et al. Transformin growth factor-beta-mediated autocrine growth regulation of gliomas as detected with phosphorothioates antisense oligonucleotides. Int J Cancer 1996;65(3):332–337.

    Article  CAS  PubMed  Google Scholar 

  113. Maggard M, Meng L, Ke B, Allen R, Devgan L, Imagawa DK. Antisense TGF-beta2 immunotherapy for hepatocellular carcinoma: treatment in a rat tumor model. Ann Surg Oncol 2001; 8(1):32–37.

    CAS  PubMed  Google Scholar 

  114. Schlingensiepen KH, Jachimczak P, Graf K, et al. Suppression of TGF-beta2 in pancreatic cancer by antisense oligonucleotide AP 12009: In vitro efficacy data. Proc Am Assoc Cancer Res 2003;44:1458.

    Google Scholar 

  115. Tojo M, Hamashima Y, Hanyu A, et al. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci 2005;96(11): 791–800.

    Article  CAS  PubMed  Google Scholar 

  116. Vieth M, Brooks HB, Hamdouchi C, et al. Combining medicinal chemistry with chemogenomic and computer-aided structure-based design in development of novel kinase inhibitors. Cell Mol Biol Lett 2003;8(2A):566–567.

    Google Scholar 

  117. Sawyer JS, Anderson BD, Beight DW, et al. Synthesis and activity of new aryl-and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. J Med Chem 2003;46(19):3953–3956.

    Article  CAS  PubMed  Google Scholar 

  118. Yingling JM, Lahn M, Glatt S, et al. Targeting the TGF-β RI kinase with LY2157299: A PK/PD-driven drug discovery and clinical development program. Proc Am Assoc Cancer Res 2005;46: Meeting Abstract.

    Google Scholar 

  119. Sawyer JS, Beight DW, Britt KS, et al. Synthesis and activity of new aryl-and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Bioorg Med Chem Lett 2004;14(13):3581–3584.

    Article  CAS  PubMed  Google Scholar 

  120. Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massagué J. The TGF beta receptor activation process: an inhibitor-to substrate-binding switch. Mol Cell 2001;8(3):671–682.

    Article  CAS  PubMed  Google Scholar 

  121. Peng SB, Yan L, Xia X, et al. Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 2005;44(7): 2293–2304.

    Article  CAS  PubMed  Google Scholar 

  122. Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 2004;64(21):7954–7961.

    Article  CAS  PubMed  Google Scholar 

  123. Tran T, Ma J, Kerr I, et al. SX-007, a small molecule TGF-β receptor I kinase inhibitor, prolongs animal survival in the syngeneic SMA560 glioma model. Proc Am Assoc Cancer Res 2005;46:6033.

    Google Scholar 

  124. Tian F, DaCosta Byfield S, Parks WT, et al. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003;63(23):8284–8292.

    CAS  PubMed  Google Scholar 

  125. Suzuki E, Kapoor V, Cheung HK, et al. Soluble type II transforming growth factor-beta receptor inhibits established murine malignant mesothelioma tumor growth by augmenting host antitumor immunity. Clin Cancer Res 2004;10(17):5907–5918.

    Article  CAS  PubMed  Google Scholar 

  126. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7(10):1118–1122.

    Article  CAS  PubMed  Google Scholar 

  127. Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2002; 2(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  128. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006;24:99–146.

    Article  CAS  PubMed  Google Scholar 

  129. Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005;8(5):369–380.

    Article  CAS  PubMed  Google Scholar 

  130. Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 2004;64(20):7596–7603.

    Article  CAS  PubMed  Google Scholar 

  131. Kobie JJ, Wu RS, Kurt RA, et al. Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 2003;63(8):1860–1864.

    CAS  PubMed  Google Scholar 

  132. Wu RS, Kobie JJ, Besselsen DG, et al. Comparative analysis of IFN-gamma B7.1 and antisense TGF-beta gene transfer on the tumorigenicity of a poorly immunogenic metastatic mammary carcinoma. Cancer Immunol Immunother 2001;50(5):229–240.

    Article  CAS  PubMed  Google Scholar 

  133. Bandyopadhyay A, Zhu Y, Malik SN, et al. Extracellular domain of TGFbeta type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene 2002;21(22):3541–3551.

    Article  CAS  PubMed  Google Scholar 

  134. Sanchez-Elsner T, Botella LM, Velasco B, Langa C, Bernabeu C. Endoglin expression is regulated by transcriptional cooperation between hypoxia and transforming growth factor-beta pathways. J Biol Chem 2002;277(46):799–43,808.

    Article  CAS  Google Scholar 

  135. Ruzek MC, Hawes M, Pratt B, et al. Minimal effects on immune parameters following chronic anti-TGF-beta monoclonal antibody administration to normal mice. Immunopharmacol Immunotoxicol 2003;25(2):235–257.

    Article  CAS  PubMed  Google Scholar 

  136. Bonniaud P, Margetts PJ, Kolb M, et al. Progressive transforming growth factor β1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am J Respir Crit Care Med 2005;171(8):889–898.

    Article  PubMed  Google Scholar 

  137. Huang Q, Jin X, Gaillard ET, et al. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants. Mutat Res 2004;549(1–2):147–167.

    CAS  PubMed  Google Scholar 

  138. Kier LD, Neft R, Tang L, et al. Applications of microarrays with toxicologically relevant genes (tox genes) for the evaluation of chemical toxicants in Sprague Dawley rats in vivo and human hepatocytes in vitro. Mutat Res 2004;549(1–2):101–113.

    CAS  PubMed  Google Scholar 

  139. Heijne WH, Jonker D, Stierum RH, van Ommen B, Groten JP. Toxicogenomic analysis of gene expression changes in rat liver after a 28-day oral benzene exposure. Mutat Res 2005;575(1–2):85–101.

    CAS  PubMed  Google Scholar 

  140. Heijne WH, Lamers RJ, van Bladeren PJ, Groten JP, van Nesselrooij JH, van Ommen B. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis. Toxicol Pathol 2005;33(4):425–433.

    Article  CAS  PubMed  Google Scholar 

  141. Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 2005;575(1–2): 61–84.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Reiss, M. (2008). Targeting Transforming Growth Factor-β in Metastasis: In Vitro and In Vivo Mechanisms. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_37

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics