Skip to main content

Detection of Rhythmic Bioluminescence From Luciferase Reporters in Cyanobacteria

  • Protocol
Circadian Rhythms

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 362))

Abstract

The unicellular cyanobacterium Synechococcus elongatus PCC 7942 is the model organism for studying prokaryotic circadian rhythms. Although S. elongatus does not display an easily measurable overt circadian behavior, its gene expression is under circadian control; hence, a “behavior” is created by linking a cyanobacterial promoter to either the bacterial luxAB or firefly luc luciferase genes to create reporter fusions whose activity can be easily monitored by bioluminescence. Numerous vectors have been created in our lab for introducing luciferase reporter genes into the S. elongatus chromosome. A choice of methods and equipment to detect light production from the luciferase fusions provides a means for high-throughput, automated mutant screens as well as testing rhythms from two promoter fusions within the same cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golden, S. S., and Sherman, L. A. (1984) Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J. Bacteriol. 158, 36–42.

    CAS  PubMed  Google Scholar 

  2. Elhai, J., and Wolk, C. P. (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol. 167, 747–754.

    Article  CAS  PubMed  Google Scholar 

  3. Golden, S. S., and Sherman, L. A. (1983) A hybrid plasmid is a stable cloning vector for the cyanobacterium Anacystis nidulans R2. J. Bacteriol. 155, 966–972.

    CAS  PubMed  Google Scholar 

  4. Bustos, S. A., and Golden, S. S. (1991) Expression of the psbDII gene in Synechococcus sp. strain PCC 7942 requires sequences downstream of the transcription start site. J. Bacteriol. 173, 7525–7533.

    CAS  PubMed  Google Scholar 

  5. Golden, S. S., Brusslan, J., and Haselkorn, R. (1987) Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 153, 215–231.

    Article  CAS  PubMed  Google Scholar 

  6. Golden, S. S. (1988) Mutagenesis of cyanobacteria by classical and gene-transfer-based methods. Methods Enzymol. 167, 714–727.

    Article  CAS  PubMed  Google Scholar 

  7. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  8. Liu, Y., Golden, S. S., Kondo, T., Ishiura, M., and Johnson, C. H. (1995) Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J. Bacteriol. 177, 2080–2086.

    CAS  PubMed  Google Scholar 

  9. Nair, U., Ditty, J. L., Min, H., and Golden, S. S. (2002) Roles for sigma factors in global circadian regulation of the cyanobacterial genome. J. Bacteriol. 184, 3530–3538.

    Article  CAS  PubMed  Google Scholar 

  10. Golden, S. S., and Canales, S. R. (2003) Cyanobacterial circadian rhythms—timing is everything. Nature Rev. Microbiol. 1, 191–199.

    Article  CAS  Google Scholar 

  11. Plautz, J. D., Straume, M., Stanewsky, R., et al. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms. 12, 204–217.

    Article  CAS  PubMed  Google Scholar 

  12. Aschoff, J. (1981) Freerunning and entrained circadian rhythms. In: Handbook of Behavioral Neurobiology: Biological Rhythms (Aschoff, J., ed.), Plenum Press, New York, pp. 81–93.

    Google Scholar 

  13. Ditty, J. L., Williams, S. B., and Golden, S. S. (2003) A cyanobacterial circadian timing mechanism. Annu. Rev. Genet. 37, 513–543.

    Article  CAS  PubMed  Google Scholar 

  14. Kondo, T., and Ishiura, M. (1994) Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence. J. Bacteriol. 176, 1881–1885.

    CAS  PubMed  Google Scholar 

  15. Golden, S. S., and Haselkorn, R. (1985) Mutation to herbicide resistance maps within the psbA gene of Anacystis nidulans R2. Science 229, 1104–1107.

    Article  CAS  PubMed  Google Scholar 

  16. Prentki, P., and Krisch, H. M. (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 29, 303–313.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Mackey, S.R., Ditty, J.L., Clerico, E.M., Golden, S.S. (2007). Detection of Rhythmic Bioluminescence From Luciferase Reporters in Cyanobacteria. In: Rosato, E. (eds) Circadian Rhythms. Methods in Molecular Biology™, vol 362. Humana Press. https://doi.org/10.1007/978-1-59745-257-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-257-1_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-417-3

  • Online ISBN: 978-1-59745-257-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics