Skip to main content

Analysis of Circadian Leaf Movement Rhythms in Arabidopsis thaliana

  • Protocol
Circadian Rhythms

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 362))

Abstract

Arabidopsis thaliana is the model organism for the study of the higher plant circadian clock. The physiological change in position of young leaves and cotyledons in Arabidopsis seedlings reveals an overt circadian rhythm. Measuring these leaf movements provides a simple and reliable assay of the plant circadian clock and, unlike systems based on the firefly luciferase reporter gene, requires no prior genetic manipulation of the plant. As such, leaf movement can be used to measure circadian rhythms in plants lacking luciferase reporter genes, or as an independent measure of the clock in plants that do possess the transgene. The imaging system described in this chapter can also be adapted to measure circadian rhythms in other plant species displaying rhythmic leaf movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., and Koornneef, M. (1998) Arabidopsis thaliana: A model plant for genome analysis. Science 282, 662–666.

    Article  CAS  PubMed  Google Scholar 

  2. Somerville, C., and Koornneef, M. (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3, 883–889.

    Article  CAS  PubMed  Google Scholar 

  3. Yanovsky, M. J., and Kay, S. A. (2001) Signaling networks in the plant circadian system. Curr. Opin. Plant Biol. 4, 429–435.

    Article  CAS  PubMed  Google Scholar 

  4. Harmer, S. L., Hogenesch, J. B., Straume, M., et al. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.

    Article  CAS  PubMed  Google Scholar 

  5. Edwards, K. D., Anderson, P. E., Hall, A., et al. (2006) Flowering locus C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639–650.

    Article  CAS  PubMed  Google Scholar 

  6. Millar, A. J., Carré, I. A., Strayer, C. A., Chua, N. H., and Kay, S. A. (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163.

    Article  CAS  PubMed  Google Scholar 

  7. Engelmann, W., Simon, K., and Phen, C. J. (1992) Leaf movement rhythms in Arabidopsis thaliana. Zeitschrift fur Naturforschung 47c, 925–928.

    Google Scholar 

  8. Dowson-Day, M. J., and Millar, A. J. (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17, 63–71.

    Article  CAS  PubMed  Google Scholar 

  9. Agosti, R. D., Jouve, L., and Greppin, H. (1997) Computer-assisted measurements of plant growth with linear variable differential transformer (LVDT) sensors. Archives des Sciences 50, 233–244.

    Google Scholar 

  10. Somers, D. E., Webb, A. A. R., Pearson, M., and Kay, S. A. (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494.

    CAS  PubMed  Google Scholar 

  11. DeMairan. (1729) Observation botanique. Histoire de l’Academie Royale des Sciences, pp. 35–36.

    Google Scholar 

  12. Engelmann, W., and Johnsson, A. (1998) Rhythms in organ movement. In: Biological Rhythms and Photoperiodism in Plants (Lumsden, P. J., and Millar, A. J., eds.), BIOS Scientific, Oxford, UK.

    Google Scholar 

  13. Darwin, C. (1981) The Power of Movement in Plants (1895). D. Appleton, New York.

    Google Scholar 

  14. Yanovsky, M. J., Izaguirre, M., Wagmaister, J. A., et al. (2000) Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J. 23, 223–232.

    Article  CAS  PubMed  Google Scholar 

  15. Salome, P. A., Michael, T. P., Kearns, E. V., Fett-Neto, A. G., Sharrock, R. A., and McClung, C. R. (2002) The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. Plant Physiol. 129, 1674–1685.

    Article  CAS  PubMed  Google Scholar 

  16. Plautz, J. D., Straume, M., Stanewsky, R., et al. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Edwards, K.D., Millar, A.J. (2007). Analysis of Circadian Leaf Movement Rhythms in Arabidopsis thaliana . In: Rosato, E. (eds) Circadian Rhythms. Methods in Molecular Biology™, vol 362. Humana Press. https://doi.org/10.1007/978-1-59745-257-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-257-1_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-417-3

  • Online ISBN: 978-1-59745-257-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics