Skip to main content

The Use of a Quantitative Cysteinyl-Peptide Enrichment Technology for High-Throughput Quantitative Proteomics

  • Protocol
Quantitative Proteomics by Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 359))

Abstract

Quantitative proteomic measurements are of significant interest in studies aimed at discovering disease biomarkers and providing new insights into biological pathways. A quantitative cysteinyl-peptide enrichment technology (QCET) can be employed to achieve higher efficiency, greater dynamic range, and higher throughput in quantitative proteomic studies based on the use of stable isotope-labeling techniques combined with high-resolution capillary or nano-scale liquid chromatography-mass spectrometry (LC-MS) measurements. The QCET approach involves specific 16O/18O-labeling of tryptic peptides, high-efficiency enrichment of cysteinyl-peptides, and confident protein identification and quantification using high mass accuracy LC-Fourier transform ion cyclotron resonance mass spectrometry (FTICR) measurements and a previously established database of accurate mass and LC elution time information for the labeled peptides. This methodology has been initially demonstrated by using proteome profiling of naïve and in vitro-differentiated human mammary epithelial cells as an example, which initially resulted in the identification and quantification of 603 proteins in a single LC-FTICR analysis. QCET provides not only highly efficient enrichment of cysteinyl-peptides for more extensive proteome coverage and improved labeling efficiency for better quantitative measurements, but more importantly, a high-throughput strategy suitable for quantitative proteome analysis where extensive or parallel proteomic measurements are required, such as in time course studies of specific pathways and clinical sample analyses for biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.

    Article  CAS  PubMed  Google Scholar 

  2. Veenstra, T. D., Martinovic, S., Anderson, G. A., Pasa-Tolic, L., and Smith, R. D. (2000) Proteome analysis using selective incorporation of isotopically labeled amino acids. J. Am. Soc. Mass Spectrom. 11, 78–82.

    Article  CAS  PubMed  Google Scholar 

  3. Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181.

    Article  CAS  PubMed  Google Scholar 

  4. Yao, X. D., Freas, A., Ramirez, J., Demirev, P. A., and Fenselau, C. (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem. 73, 2836–2842.

    Article  CAS  PubMed  Google Scholar 

  5. Tabb, D. L., MacCoss, M. J., Wu, C. C., Anderson, S. D., and Yates, J. R. 3rd. (2003) Similarity among tandem mass spectra from proteomic experiments: detection, significance, and utility. Anal. Chem. 75, 2470–2477.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, T., Qian, W. J., Strittmatter, E. F., et al. (2004) High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal. Chem. 76, 5345–5353.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, W. N., Woodbury, R. L., Kathmann, L. E., et al. (2004) Induced autocrine signaling through the epidermal growth factor receptor contributes to the response of mammary epithelial cells to tumor necrosis factor alpha. J. Biol. Chem. 279, 18,488–18,496.

    Article  CAS  PubMed  Google Scholar 

  8. Shen, Y., Zhao, R., Belov, M. E., et al. (2001) Packed capillary reversed-phase liquid chromatography with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal. Chem. 73, 1766–1775.

    Article  CAS  PubMed  Google Scholar 

  9. Smith, R. D., Anderson, G. A., Lipton, M. S., et al. (2002) An accurate mass tag strategy for quantitative and high throughput proteome measurements. Proteomics 2, 513–523.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, T., Qian, W. J., Chen, W. N., et al. (2005) Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: the human mammary epithelial cell proteome. Proteomics 5, 1263–1273.

    Article  CAS  PubMed  Google Scholar 

  11. Qian, W. J., Camp, D. G. 2nd, and Smith, R. D. (2004) High throughput proteomics using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Expert Rev Proteomics 1, 89–97.

    Article  Google Scholar 

  12. Belov, M. E., Anderson, G. A., Wingerd, M. A., et al. (2004) An automated high performance capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometer for high-throughput proteomics. J. Am. Soc. Mass. Spectrom. 15, 212–232.

    Article  CAS  PubMed  Google Scholar 

  13. Qian, W. J., Liu, T., Monroe, M. E., et al. (2005) Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: The human proteome. J. Proteome Res. 4, 53–62.

    Article  CAS  PubMed  Google Scholar 

  14. Petritis, K., Kangas, L. J., Ferguson, P. L., et al. (2003) Use of artificial neural networks for the prediction of peptide liquid chromatography elution times in proteome analyses. Anal. Chem. 75, 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  15. Horn, D. M., Zubarev, R. A., and McLafferty, F. W. (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J. Amer. Soc. Mass Spectrom. 11, 320–332.

    Article  CAS  Google Scholar 

  16. Johnson, K. L. and Muddiman, D. C. (2004) A method for calculating 16O/18O peptide ion ratios for the relative quantification of proteomes. J. Am. Soc. Mass Spectrom. 15, 437–445.

    Article  CAS  PubMed  Google Scholar 

  17. Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Liu, T., Qian, WJ., Camp, D.G., Smith, R.D. (2007). The Use of a Quantitative Cysteinyl-Peptide Enrichment Technology for High-Throughput Quantitative Proteomics. In: Sechi, S. (eds) Quantitative Proteomics by Mass Spectrometry. Methods in Molecular Biology, vol 359. Humana Press. https://doi.org/10.1007/978-1-59745-255-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-255-7_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-571-2

  • Online ISBN: 978-1-59745-255-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics