Skip to main content

Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles

  • Protocol
Metabolomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 358))

Abstract

Gas chromatography-mass spectrometry (GC-MS) is routinely applied to the metabolite profiling of biological samples. Time-of-flight (TOF)-GC-MS metabolite profiling is based on highly reproducible electron impact ionization. Single chromatograms may comprise 200–1000 mass spectral components. The nature and composition of these mass spectral components depend on the choice of metabolite extraction, type of biological sample, and experimental condition. The components represent mass spectral tags (MSTs) of volatile metabolites or metabolite derivatives. Identification of MSTs is the major challenge in GC-MS metabolite profiling. We describe methods suitable for the automated construction of mass spectral and retention time index databases from large sets of TOF-GC-MS profiles. Application of these libraries for automated identification by pure reference compounds and classification of hitherto unidentified MSTs from biological sources is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bino, R. J. Hall, R. D, Fiehn, O., et al. (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9, 418–425.

    Article  PubMed  CAS  Google Scholar 

  2. Fernie, A. R., Trethewey, R. N., Krotzky, A. J., and Willmitzer, L. (2004) Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769.

    Article  PubMed  CAS  Google Scholar 

  3. Wagner, C., Sefkow, M., and Kopka, J. (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochem. 62, 887–900.

    Article  CAS  Google Scholar 

  4. Colebatch, G., Desbrosses, G., Ott, T., et al. (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J. 39, 487–512.

    Article  PubMed  Google Scholar 

  5. Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A., and Kopka, J. (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol. 23, 28–33.

    Article  PubMed  CAS  Google Scholar 

  6. Fiehn, O., Kopka, J., Trethewey. R. N., and Willmitzer., L. (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72, 3573–3580.

    Article  PubMed  CAS  Google Scholar 

  7. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., and Willmitzer, L. (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23, 131–142.

    Article  PubMed  CAS  Google Scholar 

  8. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., and Willmitzer, L. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  9. Roessner, U., Luedemann, A., Brust, D., et al. (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29.

    Article  PubMed  CAS  Google Scholar 

  10. Kovàts. E. S. (1958) Gas-chromatographische characterisierung organischer verbindungen: Teil 1. Retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv. Chim. Acta 41, 1915–1932.

    Article  Google Scholar 

  11. van Deursen, M. M., Beens, J., Janssen, H.-G., Leclercq, P. A., and Cramers, C. A. (2000) Evaluation of time-of-flight mass spectrometric detection for fast gas chromatography. J. Chromatogr. A 878, 205–213.

    Article  Google Scholar 

  12. Kopka, J., Schauer, N., Krueger, S., et al. (2005) GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics 21, 1635–1638.

    Article  PubMed  CAS  Google Scholar 

  13. Ausloos, P., Clifton, C. L., Lias, S. G., et al. (1999) The critical evaluation of a comprehensive mass spectral library. J. Am. Soc. Mass Spectrom. 10, 287–299.

    Article  PubMed  CAS  Google Scholar 

  14. Stein, S. E. (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10, 770–781.

    Article  CAS  Google Scholar 

  15. Kopka, J., Fernie, A. R., Weckwerth, W., Gibon, Y., and Stitt, M. (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol. 5, 109–117.

    Article  PubMed  Google Scholar 

  16. Weckwerth, W., Wenzel, K., and Fiehn, O. (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4, 78–83.

    Article  PubMed  CAS  Google Scholar 

  17. De Koning, W. and van Dam, K. (1992) A method for the determination of changes in glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204, 118–123.

    Article  PubMed  Google Scholar 

  18. Gonzalez, B., Francois, J., and Renaud, M. (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13, 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  19. Castrillo, J. I., Hayes, A., Mohammed, S., Gaskell, S. J., and Oliver, S. G. (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62, 929–937.

    Article  PubMed  CAS  Google Scholar 

  20. Batagelj, V. and Mrvar, A. (1998) Pajek: program for large network analysis. Connections 21, 47–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Erban, A., Schauer, N., Fernie, A.R., Kopka, J. (2007). Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles. In: Weckwerth, W. (eds) Metabolomics. Methods in Molecular Biology™, vol 358. Humana Press. https://doi.org/10.1007/978-1-59745-244-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-244-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-561-3

  • Online ISBN: 978-1-59745-244-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics