Skip to main content

Comparing Algorithms for Clustering of Expression Data: How to Assess Gene Clusters

  • Protocol
  • First Online:
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

Abstract

Clustering is a popular technique commonly used to search for groups of similarly expressed genes using mRNA expression data. There are many different clustering algorithms and the application of each one will usually produce different results. Without additional evaluation, it is difficult to determine which solutions are better.

In this chapter we discuss methods to assess algorithms for clustering of gene expression data. In particular, we present a new method that uses two elements: an internal index of validity based on the MDL principle and an external index of validity that measures the consistency with experimental data. Each one is used to suggest an effective set of models, but it is only the combination of both that is capable of pinpointing the best model overall. Our method can be used to compare different clustering algorithms and pick the one that maximizes the correlation with functional links in gene networks while minimizing the error rate. We test our methods on several popular clustering algorithms as well as on clustering algorithms that are specially tailored to deal with noisy data. Finally, we propose methods for assessing the significance of individual clusters and study the correspondence between gene clusters and biochemical pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spellman, P.T., Sherlock, G., Zhang, M., Iyer, V., Eisen, M., Brown, P., Botstein, D. & Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by Microarray Hybridization. Mol. Bio. Cell. 9, 3273–3297.

    CAS  Google Scholar 

  2. Hughes, T., Marton, M., Jones, A., Roberts, C., Stoughton, R., Armour, C., Bennett, H., Coffey, E., Dai, H., He, Y., Kidd, M., King, A., Meyer, M., Slade, D., Lum, P., Stepaniants, S., Shoemaker, D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M. & Friend, S. (2000). Functional discovery via a compendium of expression profiles. Cell. 102, 109–126.

    Article  PubMed  CAS  Google Scholar 

  3. Liu, E.T. (2003). Classification of cancers by expression profiling. Curr. Opin. Genet. Dev. 13, 97–103.

    Article  PubMed  CAS  Google Scholar 

  4. McCormick, S.M., Frye S.R., Eskin, S.G., Teng, C.L., Lu, C.M., Russell, C.G., Chittur, K.K. & McIntire L.V. (2003). Microarray analysis of shear stressed endothelial cells. Biorheology, 40, 5–11.

    PubMed  Google Scholar 

  5. Yeatman, T.J. (2003). The future of clinical cancer management: one tumor, one chip. Am. Surg. 69, 41–44.

    PubMed  Google Scholar 

  6. Yoo, M.S., Chun, H.S., Son, J.J., DeGiorgio, L.A., Kim, D.J., Peng, C. & Son J.H. (2003). Brain research. Mol. Brain Res. 110, 76–84.

    Article  PubMed  CAS  Google Scholar 

  7. Jain, A.K. & Dubes, R.C. (1988).”Algorithms for clustering data”. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  8. Jain, A.K., Murthy, M.N. & Flynn, P.J. (1999). Data clustering: a review. ACM Comput. Surv.. 31, 264–323.

    Article  Google Scholar 

  9. Boutros, P.C. & Okey, A.B. (2005). Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief Bioinform. 6, 33 1–343.

    Article  PubMed  CAS  Google Scholar 

  10. D’haeseleer, P. (2005). How does gene expression clustering work? Nat. Biotechnol. 23, 1499–1501.

    Article  PubMed  Google Scholar 

  11. Gray, R. M., Kieffer, J. C. & Linde, Y. (1980). Locally optimal block quantizier design. Inf. Control 45, 178–198.

    Article  Google Scholar 

  12. Rose, K., Gurewitz, E. & Fox, G. (1990). A deterministic annealing approach to clustering. Patt. Rec. Lett. 11, 589–594.

    Article  Google Scholar 

  13. Wu, Z. & Leahy, R. (1993). An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. PAMI. 15, 1101–1113.

    Google Scholar 

  14. Shi, J. & Malik, J. (1997). Normalized cuts and image segmentation. Proc. CVPR. 731–737.

    Google Scholar 

  15. Dubnov, S., El-Yaniv, R., Gdalyahu, Y., Schneidman, E., Tishby, N. & Yona, G. (2002). A new non-parametric pairwise clustering algorithm based on iterative estimation of distance profiles. Mach. Learn., 47, 35–61.

    Article  Google Scholar 

  16. Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific, Singapore.

    Google Scholar 

  17. Bolshakova, N., Azuaje, F. & Cunningham, P. (2005). A knowledge-driven approach to cluster validity assessment. Bioinformatics. 21, 2546–2547.

    Article  PubMed  CAS  Google Scholar 

  18. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G. (2000). Gene ontology: tool for the unification of biology. Gene Ontol. Consortium. Nat Genet. 25, 25–29.

    CAS  Google Scholar 

  19. Speer, N., Spieth, C. & Zell, A. (2004). A memetic clustering algorithm for the functional partition of genes based on the gene ontology. In Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2004), San Diego, USA IEEE Press, 252–259.

    Google Scholar 

  20. Raychaudhuri, S., Schutze, H. & Altman, R.B. (2002). Using text analysis to identify functionally coherent gene groups. Genome Res. 12, 1582–1590.

    Article  PubMed  CAS  Google Scholar 

  21. Gat-Viks, I., Sharan, R. & Shamir, R. (2003). Scoring clustering solutions by their biological relevance. Bioinformatics 19 2381–2389.

    Article  PubMed  CAS  Google Scholar 

  22. Bolshakova, N. & Azuaje, F. (2003). Machaon CVE: cluster validation for gene expression data. Bioinformatics 19, 2494–2495.

    Article  PubMed  CAS  Google Scholar 

  23. Bertoni, A. & Valentini, G. (2006). Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses. Artif. Intell. Med. 37 85–109.

    Article  PubMed  Google Scholar 

  24. Olman, V., Xu, D. & Xu, Y. (2003).CUBIC: identification of regulatory binding sites through data clustering. J. Bioinform. Comput. Biol. 1, 21–40.

    Article  PubMed  CAS  Google Scholar 

  25. McShane, L.M., Radmacher, M.D., Freidlin, B., Yu, R., Li, M.C. & Simon, R. (2002). Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics. 18, 1462–1469.

    Article  PubMed  CAS  Google Scholar 

  26. Yeung, K.Y., Haynor, D.R. & Ruzzo, W.L. (2001). Validating clustering for gene expression data. Bioinformatics. 17, 309–318.

    Article  PubMed  CAS  Google Scholar 

  27. Smolkin, M. & Ghosh, D. (2003).Cluster stability scores for microarray data in cancer studies. BMC Bioinformatics. 4, 36.

    Article  PubMed  Google Scholar 

  28. Dudoit, S. & Fridlyand, J. (2003).Bagging to improve the accuracy of a clustering procedure. Bioinformatics. 19 1090–1099.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, K. & Zhao, H. (2000). Assessing reliability of gene clusters from gene expression data. Funct. Integr. Genomics. 1, 156–173.

    Article  PubMed  CAS  Google Scholar 

  30. Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.

    Article  Google Scholar 

  31. Bejerano, G. (2003). Efficient exact p-value computation and applications to biosequence analysis. In the proceedings of RECOMB 2003, 38–47, ACM press, New York.

    Chapter  Google Scholar 

  32. Yona, G., Dirks, W., Rahman, R. & Lin, M. (2006). Effective similarity measures for expression profiles. Bioinformatics. 22, 1616–1622.

    Article  PubMed  CAS  Google Scholar 

  33. Dirks, W. & Yona, G. (2003). A comprehensive study of the notion of functional link between genes based on microarray data, promoter signals, protein-protein interactions and pathway analysis. Technical report TR2004-1921, Computing and Information Science, Cornell University.

    Google Scholar 

  34. Kanehisa, M. (1996). Toward pathway engineering: a new database of genetic and molecular pathways. Sci. Technol. Jpn. 59, 34–38.

    Google Scholar 

  35. Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol. 19, 1720–1730.

    PubMed  CAS  Google Scholar 

  36. Qian, J., Dolled-Filhart, M., Lin, J., Yu, H. & Gerstein, M. (2001). Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J. Mol. Biol. 312, 1053–1066.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under Grant No. 0218521, as part of the NSF/NIH Collaborative Research in Computational Neuroscience Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yona, G., Dirks, W., Rahman, S. (2009). Comparing Algorithms for Clustering of Expression Data: How to Assess Gene Clusters. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics