Skip to main content

Nanoparticle-Mediated Gene Delivery to the Lung

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 433))

Summary

Drug delivery, especially gene delivery to the lung, has been a challenge. Numerous gene delivery systems to the lung have been developed and tested in preclinical studies. However, only a few of them have been successfully tested in the clinic and shown promise. The reasons for failure to translate preclinical findings into clinical setting include inefficient gene delivery, toxicity, stability, and other factors related to scaling and manufacturing of the gene delivery vehicle. Therefore, there is a need for developing and testing of new gene delivery systems that can overcome some of the existing limitations. Preclinical studies from our laboratory using a cationic lipid (1,2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP):cholesterol)-based nanoparticle have shown efficient and effective gene delivery to the lung especially to tumor-bearing lungs of mice. Based on the efficacy and toxicity studies observed in preclinical studies, we have recently initiated a Phase I clinical trial for systemic treatment of non-small cell lung cancer (NSCLC). In this clinical trial, a tumor suppressor gene encapsulated in the lipid-based nanoparticle will be delivered intravenously to determine the maximum-tolerated dose (MTD). The results from this clinical trial will provide a basis for conducting subsequent Phase II trial that will focus on determining toxicity and therapeutic efficacy. In this chapter, the details for the synthesis and testing of the lipid-based nanoparticle for systemic gene delivery to the lung with emphasis on lung cancer is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards, B.K., Brown, M.L., Wingo, P.A., Howe, H.L., Ward, E., Ries, L.A., Schrag, D., Jamison, P.M., Jemal, A., Wu, X.C., Friedman, C., Harlan, L., Warren, J., Anderson, R.N., and Pickle, L.W. (2005) Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 97, 1407–1427.

    Article  PubMed  Google Scholar 

  2. Greenlee, R., Murray, T., Bolden, S., and Wingo, P.A. (2000) Cancer statistics.CA Cancer J Clin 50, 7–33.

    Article  CAS  PubMed  Google Scholar 

  3. Cuenca, A.G., Jiang, H., Hochwald, S.N., Delano, M., Cance, W.G., and Grobmyer, S.R. (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics.Cancer Jun 22, 107, 459–466.

    CAS  Google Scholar 

  4. Kubik, T., Bogunia-Kubik, K., and Sugaisaka M. (2005) Nanotechnology on duty in medical applications.Curr Pharm Biotechnol 6, 17–33.

    CAS  PubMed  Google Scholar 

  5. Yezhelyev, M.V., Gao, X., Xing, Y., Al-Hajj, A., Nie, S., and O’Regan, R.M. (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer.Lancet Oncol 7, 657–667.

    Article  CAS  PubMed  Google Scholar 

  6. Kaul, Z., Yaguchi, T., Kaul, S.C., and Wadhwa, R. (2006) Quantum dot-based protein imaging and functional significance of two mitochondrial chaperones in cellular senescence and carcinogenesis. Ann N Y Acad Sci 1067, 469–473.

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi, H., Kawamoto, S., Brechbiel, M.W., Bernardo, M., Sato, N., Waldmann, T.A., Tagaya, Y., and Choyke, P.L. (2005) Detection of lymph node involvement in hematologic malignancies using micromagnetic resonance lymphangiography with a gadolinum-labeled dendrimer nanoparticle.Neoplasia 7, 984–991.

    Article  PubMed  Google Scholar 

  8. Smith, A.M., Dave, S., Nie, S., True, L., and Gao, X. (2006) Multicolor quantum dots for molecular diagnostics of cancer.Expert Rev Mol Diagn 6, 231–244.

    Article  CAS  PubMed  Google Scholar 

  9. Devalapally, H., Shenoy, D., Little, S., Langer, R., and Amiji, M. (2006) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model.Cancer Chemother Pharmacol Jul 22, 2007, 59, 477–404.

    Article  Google Scholar 

  10. Reddy, L.H., Vivek, K., Bakshi, N., and Murthy, R.S. (2006) Tamoxifen citrate loaded solid lipid nanoparticles (SLN): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation.Pharm Dev Technol 11, 167–177.

    Article  CAS  PubMed  Google Scholar 

  11. Farokhzad, O.C., Karp, J.M., and Langer, R. (2006) Nanoparticle-aptamer bioconjugates for cancer targeting.Expert Opin Drug Deliv 3, 311–324.

    Article  CAS  PubMed  Google Scholar 

  12. Ramesh, R., Saeki, T., Templeton, N.S., Ji, L., Stephens, L.C., Ito, I., Wilson, D.R., Wu, Z., Branch, C.D., Minna, J.D., and Roth, J.A. (2001) Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector.Mol Ther 3, 1–14.

    Article  Google Scholar 

  13. Ito, I., Ji, L., Tanaka, F., Saito, Y., Gopalan, B., Branch, C.D., Xu, K., Atkinson, E.N., Bekele, B.N., Stephens, L.C., Minna, J.D., Roth, J.A., and Ramesh, R. (2004) Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo.Cancer Gene Ther 11, 733–739.

    Article  CAS  PubMed  Google Scholar 

  14. Gopalan, B., Ito, I., Branch, C.D., Stephens, C., Roth, J.A., and Ramesh, R. (2004) Nanoparticle based systemic gene therapy for lung cancer: molecular mechanisms and strategies to suppress nanoparticle-mediated inflammatory response.Technol Cancer Res Treat 3, 647–657.

    CAS  PubMed  Google Scholar 

  15. Ramesh, R., Ito, I., Saito, Y., Wu, Z., Mhashikar, A.M., Wilson, D.R., Branch, C.D., Roth, J.A., and Chada, S. (2004) Local and systemic inhibition of lung tumor growth after nanoparticle-mediated mda-7/IL-24 gene delivery.DNA Cell Biol 23, 850–857.

    CAS  PubMed  Google Scholar 

  16. Templeton, N.S., Lasic, D.D., Frederick, P.M., Strey, H.H., Roberts, D.D., and Pavlakis, G.N.(1997) Improved DNA:liposome complexes for increased systemic delivery and gene expression.Nat Biotechnol 15, 647–652.

    Article  CAS  PubMed  Google Scholar 

  17. Ito, I., Began, G., Mohiuddin, I., Saeki, T., Saito, Y., Branch, C.D., Vaporciyan, A., Stephens, L.C., Yen, N., Roth, J.A., and Ramesh, R. (2003) Increased uptake of liposomal-DNA complex by lung metastases following intravenous administration.Mol Ther 7, 409–418.

    Article  CAS  PubMed  Google Scholar 

  18. Ito, I., Saeki, T., Mohuiddin, I., Saito, Y., Branch, C.D., Vaporciyan, A., Roth, J.A., and Ramesh R. (2004) Persistent transgene expression following intravenous administration of a liposomal complex: role of IL-10 mediated immune suppression.Mol Ther 9, 318–327.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks past and present members of the laboratory for their contribution in the development and testing of nanoparticles for gene delivery to the lung. This work was supported in part by the W.M. Keck Gene Therapy grant, by the Texas Higher Education Coordinating Board ARP/ATP grant 003657-0078-2001, by a Career Development award from the University of Texas SPORE in Lung Cancer (P50 CA70907), and by a sponsored research agreement with Introgen Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ramesh, R. (2008). Nanoparticle-Mediated Gene Delivery to the Lung. In: Gene Therapy Protocols. Methods in Molecular Biology™, vol 433. Humana Press. https://doi.org/10.1007/978-1-59745-237-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-237-3_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-903-1

  • Online ISBN: 978-1-59745-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics