Skip to main content

Gene Targeting in Drosophila and Caenorhabditis elegans With Zinc-Finger Nucleases

  • Protocol
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 435))

Abstract

Zinc-finger nucleases (ZFNs) are promising new tools for enhancing the efficiency of gene targeting in many organisms. Because of the flexibility of zinc finger DNA recognition, ZFNs can be designed to bind many different genomic sequences. The double-strand breaks they create are repaired by cellular processes that generate new mutations at the cleavage site. In addition, the breaks can be repaired by homologous recombination with an exogenous donor DNA, allowing the experimenter to introduce designed sequence alterations. We describe the construction of ZFNs for novel targets and their application to targeted mutagenesis and targeted gene replacement in Drosophila melanogaster and Caenorhabditis elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothstein, R. J. (1983) One-step gene disruption in yeast. Methods Enzymol. 101, 202–211.

    Article  CAS  PubMed  Google Scholar 

  2. Capecchi, M. R. (1989) Altering the genome by homologous recombination. Science 244, 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  3. Rong, Y. S. and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018.

    Article  CAS  PubMed  Google Scholar 

  4. Porteus, M. H. and Carroll, D. (2005) Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson, R. D. and Jasin, M. (2001) Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201.

    Article  CAS  PubMed  Google Scholar 

  6. Blancafort, P., Segal, D. J., and Barbas, III, C. F. (2004) Designing transcription factor architectures for drug discovery. Mol. Pharmacol. 66, 1361–1371.

    Article  CAS  PubMed  Google Scholar 

  7. Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H., and Chandrasegaran, S. (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990.

    Article  CAS  PubMed  Google Scholar 

  8. Papworth, M., Kolasinska, P., and Minczuk, M. (2006) Designer zinc-finger proteins and their applications. Gene 366, 27–38.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, Y.-G., Cha, J., and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160.

    Article  CAS  PubMed  Google Scholar 

  10. Pabo, C. O., Peisach, E., and Grant, R. A. (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340.

    Article  CAS  PubMed  Google Scholar 

  11. Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., and Barbas III, C. F. (2001) Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J. Biol. Chem. 276, 29,466–29,478.

    Article  CAS  PubMed  Google Scholar 

  12. Dreier, B., Fuller, R. P., Segal, D. J., et al. (2005) Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in construction of artificial transcription factors. J. Biol. Chem. 280, 35,588–35,597.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Q., Xia, Z. Q., Zhong, X., and Case, C. C. (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856.

    Article  CAS  PubMed  Google Scholar 

  14. Segal, D. J., Dreier, B., Beerli, R. R., and Barbas, III, C. F. (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763.

    Article  CAS  PubMed  Google Scholar 

  15. Bitinaite, J., Wah, D. A., Aggarwal, A. K., and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10,570–10,575.

    Article  CAS  PubMed  Google Scholar 

  16. Smith, J., Bibikova, M., Whitby, F. G., Reddy, A. R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  17. Urnov, F. D., Miller, J. C., Lee, Y.-L., et al. (2005) Highly efficient endogenous gene correction using designed zinc-finger nucleases. Nature 435, 646–651.

    Article  CAS  PubMed  Google Scholar 

  18. Alwin, S., Gere, M. B., Gulh, E., et al. (2005) Custom zinc-finger nucleases for use in human cells. Mol. Ther. 12, 610–617.

    Article  CAS  PubMed  Google Scholar 

  19. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J. K., and Carroll, D. (2006) Efficient gene targeting in Drosophila with zinc finger nucleases. Genetics 172, 2391–2403.

    Article  CAS  PubMed  Google Scholar 

  20. Bibikova, M., Beumer, K., Trautman, J. K., and Carroll, D. (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.

    Article  CAS  PubMed  Google Scholar 

  21. Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y.-G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297.

    Article  CAS  PubMed  Google Scholar 

  22. Bibikova, M., Golic, M., Golic, K. G., and Carroll, D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175.

    CAS  PubMed  Google Scholar 

  23. Lloyd, A., Plaisier, C. L., Carroll, D., and Drews, G. N. (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2232–2237.

    Article  CAS  PubMed  Google Scholar 

  24. Porteus, M. H. (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–446.

    Article  CAS  PubMed  Google Scholar 

  25. Porteus, M. H. and Baltimore, D. (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763.

    Article  PubMed  Google Scholar 

  26. Wright, D. A., Townsend, J. A., Winfrey, R. J., Jr., et al. (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705.

    Article  CAS  PubMed  Google Scholar 

  27. Morton, J., Davis, M. W., Jorgensen, E. M., and Carroll, D. (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl. Acad. Sci. USA 103, 16,370–16,375.

    Article  CAS  PubMed  Google Scholar 

  28. Ashburner, M., Golic, K. G., and Hawley, R. S. (2005) Drosophila. A Laboratory Handbook, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  29. Greenspan, R. J. (2004) Fly pushing: the theory and practice of Drosophila genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  30. Riddle, D. L., Blumenthal, T., Meyer, B. J., and Priess, J. R. (eds.) (1997) C. elegans II, Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  31. Wood, W. B. (ed.) (1988) The Nematode Caenorhabditis elegans, Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  32. Carroll, D., Morton, J. J., Beumer, K. J., and Segal, D. J. (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat. Protoc. 1, 1329–1341.

    Article  CAS  PubMed  Google Scholar 

  33. Gong, W. J. and Golic, K. G. (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl. Acad. Sci. USA 100, 2556–2561.

    Article  CAS  PubMed  Google Scholar 

  34. Keeler, K. J., Dray, T., Penney, J. E., and Gloor, G. B. (1996) Gene targeting of a plasmid-borne sequence to a double-strand DNA break in Drosophila melanogaster. Mol. Cell. Biol. 16, 522–528.

    CAS  PubMed  Google Scholar 

  35. Gloor, G. B. (2002) The role of sequence homology in the repair of DNA doublestrand breaks in Drosophila. Adv. Genet. 46, 91–117.

    Article  CAS  PubMed  Google Scholar 

  36. Elliott, B., Richardson, C., Winderbaum, J., Nickoloff, J. A., and Jasin, M. (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18, 93–101.

    CAS  PubMed  Google Scholar 

  37. Rorth, P. (1998) Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118.

    Article  CAS  PubMed  Google Scholar 

  38. Wright, D. A., Thibodeau-Beganny, S., Sander, J. D., et al. (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat. Protoc. 1, 1637–1652.

    Article  PubMed  Google Scholar 

  39. Mandell, J. G. and Barbas, III, C. F. (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–W523.

    Article  CAS  PubMed  Google Scholar 

  40. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  41. Rong, Y. S. and Golic, K. G. (2001) A targeted gene knockout in Drosophila. Genetics 157, 1307–1312.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Carroll, D., Beumer, K.J., Morton, J.J., Bozas, A., Trautman, J.K. (2008). Gene Targeting in Drosophila and Caenorhabditis elegans With Zinc-Finger Nucleases. In: Davis, G.D., Kayser, K.J. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 435. Humana Press. https://doi.org/10.1007/978-1-59745-232-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-232-8_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-899-7

  • Online ISBN: 978-1-59745-232-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics