Skip to main content

Three-Dimensional Crystallization of Membrane Proteins

  • Protocol
Macromolecular Crystallography Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 363))

Abstract

Although the examination of the protein data bank reveals an important backlog in the number of three-dimensional structures of membrane proteins, several recent successes are serving as preludes to what will become a very prosperous decade in this field. Systematic investigations of various factors affecting the stability of membrane proteins, as well as their potential to crystallize three dimensionally, have paved the way for such achievements. The importance of the role of detergents both at the level of purification and crystallization is now well established. In addition, the recognition of the protein-detergent complex as the entity to crystallize, as well as the understanding of its physical-chemical properties and discovery of factors affecting these, have permitted the design of better crystallization strategies. As a consequence of the various efforts in the field, new crystallization methods for membrane proteins are being implemented. These have already been successful and are expected to contribute significantly to the future successes. This chapter will review some basic principles in membrane protein crystallization and give an overview of the current state of the art in the field. Some practical guidelines to help the novice approach the problem of membrane protein crystallization from the initial step of protein purification to crystallogenesis will also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerstein, M. (1998) How representative are the known structures of the proteins in a complete genome? A comprehensive structural census. Fold. Des. 3, 497–512.

    Article  CAS  PubMed  Google Scholar 

  2. Boyd D., Schierle C., and Beckwith J. (1998) How many membrane proteins are there? Protein Sci. 7, 201–205.

    Article  CAS  PubMed  Google Scholar 

  3. Stahlberg, H., Fotiadis, D., Scheuring, S., et al. (2001) Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett. 504, 166–172.

    Article  CAS  PubMed  Google Scholar 

  4. Locher, K. P., Lee, A. T., and Rees, D. C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.

    Article  CAS  PubMed  Google Scholar 

  5. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive Ion Channel. Science 282, 2220–2226.

    Article  CAS  PubMed  Google Scholar 

  6. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., et al. (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77.

    Article  CAS  PubMed  Google Scholar 

  7. Tate, C. G. (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett. 504, 94–98.

    Article  CAS  PubMed  Google Scholar 

  8. Michel, H. (2003) Crystallization of membrane proteins. In: Macromolecular Crystallography, vol. F, (Rossmann, M. G. and Arnold, E., eds.), Kluwer, Dordrecht, Germany, pp. 9499.

    Google Scholar 

  9. Michel, H. (1983) Crystallization of membrane proteins. TIBS 8, 56–59.

    CAS  Google Scholar 

  10. Kühlbrandt, W. (1988) Three-dimensional crystallization of membrane proteins. Q. Rev. Biophys. 21, 429–477.

    Article  PubMed  Google Scholar 

  11. Garavito, R. M., Picot, D., and Loll, P. J. (1996) Strategies for crystallizing membrane proteins. J. Bioenerg. Biomembr. 28, 13–27.

    CAS  PubMed  Google Scholar 

  12. Caffrey, M. (2003) Membrane protein crystallization. J. Struct. Biol. 142, 108–132.

    Article  CAS  PubMed  Google Scholar 

  13. Abramson, J. and Iwata, S. (1999) Crystallization of membrane proteins. In: Protein Crystallization: A Laboratory Mannual, (Bergfors, T., ed.), International University Line, La Jolla, CA pp. 199–210.

    Google Scholar 

  14. Neugebauer, J. M. (1990) Detergents: an overview. Meth. Enzymol. 182, 239–253.

    Article  CAS  PubMed  Google Scholar 

  15. Garavito, R. M. and Ferguson-Miller, S. (2001) Detergents as Tools in membrane biochemistry. J. Biol. Chem. 276, 32,403–32,406.

    Article  CAS  PubMed  Google Scholar 

  16. Zulauf, M., Furstenberger, U., Grabo, M., Jaggi, P., Regenass, M., and Rosenbusch, J. P. (1989) Critical micellar concentrations of detergents. Meth. Enzymol. 172, 528–538.

    Article  CAS  PubMed  Google Scholar 

  17. Timmins, P. A., Leonhard, M., Weltzien, H. U., Wacker, T., and Welte, W. (1988) A physical characterization of some detergents of potential use for membrane protein crystallization. FEBS Lett. 238, 361–368.

    Article  CAS  Google Scholar 

  18. Zulauf, M. (1991) Detergent phenomena in membrane protein crystallization. In: Crystallization of Membrane Proteins, (Michel, H., ed.), CRC Press, Boca Raton, FL, pp. 53–72.

    Google Scholar 

  19. Rosenow, M. A., Williams, J. C., and Allen, J. P. (2001) Amphiphiles modify the properties of detergent solutions used in crystallization of membrane proteins. Acta Crystallogr. D. 57, 925–927.

    Article  CAS  PubMed  Google Scholar 

  20. Garavito, R. M. (1991) Crystallizing membrane proteins: experiments on different systems. In: Crystallization of Membrane Proteins, (Michel, H., ed.), CRC Press, Boca Raton, FL, pp. 89–106.

    Google Scholar 

  21. Hitscherich, C., Jr., Kaplan, J., Allaman, M., Wiencek, J., and Loll, P. J. (2000) Static light scattering studies of OmpF porin: implications for integral membrane protein crystallization. Protein Sci. 9, 1559–1566.

    Article  CAS  PubMed  Google Scholar 

  22. Hitscherich, C., Jr., Aseyev, V., Wiencek, J., and Loll, P. J. (2001) Effects of PEG on detergent micelles: implications for the crystallization of integral membrane proteins. Acta Crystallogr. D. 57, 1020–1029.

    Article  PubMed  Google Scholar 

  23. Welte, W., Wacker, T., Leis, M., et al. (1985) Crystallization of the photosynthetic light-harvesting pigment-protein complex B800-850 of Rhodopseudomonas capsulata. FEBS Lett. 182, 260–264.

    Article  CAS  Google Scholar 

  24. Scarborough, G. (1994) Large single crystals of the Neurospora crassa plasma membrane H+-ATPase: an approach to the crystallization of membrane proteins. Acta Crystallogr. D. 50, 643–649.

    Article  CAS  PubMed  Google Scholar 

  25. Timmins, P. A., Hauk, J., Wacker, T., and Welte, W. (1991) The influence of heptane-1,2,3-triol on the size and shape of LDAO micelles Implications for the crystallisation of membrane proteins. FEBS Lett. 280, 115–120.

    Article  CAS  PubMed  Google Scholar 

  26. Michel, H. (1982) Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 158, 567–572.

    Article  CAS  PubMed  Google Scholar 

  27. Tribet, C., Audebert, R., and Popot, J. L. (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc. Natl. Acad. Sci. USA 93, 15,047–15.050.

    Article  CAS  PubMed  Google Scholar 

  28. Prata, C., Giusti, F., Gohon, Y., Pucci, B., Popot, J. L., and Tribet, C. (2000) Nonionic amphiphilic polymers derived from Tris(hydroxymethyl)-acrylamidomethane keep membrane proteins soluble and native in the absence of detergent. Biopolymers 56, 77–84.

    Article  CAS  PubMed  Google Scholar 

  29. Yu, S. M., McQuade, D. T., Quinn, M. A., et al. (2000) An improved tripod amphiphile for membrane protein solubilization. Prot. Sci. 9, 2518–2527.

    Article  CAS  Google Scholar 

  30. McQuade, D. T., Quinn, M. A., Yu, S. M., Polans, A. S., Krebs, M. P., and Gellman, S. H. (2000) Rigid amphiphiles for membrane protein manipulation. Angew. Chem. Int. Ed Engl. 39, 758–761.

    Article  CAS  PubMed  Google Scholar 

  31. McGregor, C. L., Chen, L., Pomroy, N. C., et al. (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat. Biotechnol. 21, 171–176.

    Article  CAS  PubMed  Google Scholar 

  32. Wilkens, S., Zhou, J., Nakayama, R., Dunn, S. D., and Capaldi, R. A. (2000) Localization of the delta subunit in the Escherichia coli F1F0-ATPsynthase by immuno electron microscopy: the delta subunit binds on top of the F1. J. Mol. Biol. 295, 387–391.

    Article  CAS  PubMed  Google Scholar 

  33. Helenius, A., McCaslin, D. R., Fries, E., and Tanford, C. (1979) Properties of detergents. Meth. Enzymol. 56, 734–749.

    Article  CAS  PubMed  Google Scholar 

  34. von Jagow, G., Link, T. A., and Schägger, H. (2003) Purification strategies for membrane proteins. In: Membrane Protein Purification and Crystallization, (Hunte, C., von Jagow, G, and Schägger, H., eds.), Academic Press, Amsterdam, The Netherlands, pp. 1–18.

    Google Scholar 

  35. Schägger, H. (2003) Techniques and basic operations in membrane protein purification. In: Membrane Protein Purification and Crystallization, (Hunte, C., von Jagow, G, and Schägger, H., eds.), Academic Press, Amsterdam, The Netherlands, pp. 19–53.

    Chapter  Google Scholar 

  36. Roobol-Boza, M. and Andersson, B. (1996) Isolation of hydrophobic membrane proteins by perfusion chromatography-purification of photosystem II reaction centers from spinach chloroplasts. Anal. Biochem. 235, 127–133.

    Article  CAS  PubMed  Google Scholar 

  37. Bergfors, T. (1999) Protein samples. In: Protein Crystallization: A Laboratory Mannual, (Bergfors, T. M., ed.), International University Line, La Jolla, CA, pp. 17–25.

    Google Scholar 

  38. Palma, A. M., Thiyagarajan, P., Wagner, A. M., and Tiede, D. M. (1999) Effect of detergent alkyl chain length on crystallization of a detergent-solubilized membrane protein: correlation of protein-detergent particle size and particle-particle interaction with crystallization of the photosynthetic reaction center from Rhodobacter sphaeroides. J. Crystal Growth 207, 214–225.

    Article  Google Scholar 

  39. Shinzawa-Itoh, K., Ueda, H., Yoshikawa, S., Aoyama, H., Yamashita, E., and Tsukihara, T. (1995) Effects of ethyleneglycol chain length of dodecyl polyethyleneglycol monoether on the crystallization of bovine heart cytochrome c oxidase. J. Mol. Biol. 246, 572–575.

    Article  CAS  PubMed  Google Scholar 

  40. Loll, P. J., Allaman, M., and Wiencek, J. (2001) Assessing the role of detergent-detergent interactions in membrane protein crystallization. J. Crystal Growth 232, 432–438.

    Article  CAS  Google Scholar 

  41. Song, L. and Gouaux, E. (1997) Membrane protein crystallization: application of sparse matrices to the alpha-hemolysin heptamer. Meth. Enzymol. 276, 60–74.

    Article  CAS  Google Scholar 

  42. Chayen, N. E. (1997) The role of oil in macromolecular crystallization. Structure 5, 1269–1274.

    Article  CAS  PubMed  Google Scholar 

  43. Loll, P. J., Tretiakova, A., and Soderblom, E. (2003) Compatibility of detergents with the microbatch-under-oil crystallization method. Acta Crystallogr. D. 59, 1114–1116.

    Article  PubMed  CAS  Google Scholar 

  44. Reiss-Husson, R. (1992) Crystallization of membrane proteins. In: Crystallization of Nucleic Acids and Proteins: A Practical Approach, (Ducruix, A. and Giegé, R., eds.), IRL Press, Oxford, UK, pp. 175–193.

    Google Scholar 

  45. Garavito, R. M., Markovic-Housley, Z., and Jenkins, J. A. (1986) The growth and characterization of membrane protein crystals. J. Crystal Growth 76, 701–709.

    Article  CAS  Google Scholar 

  46. Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655.

    Article  CAS  PubMed  Google Scholar 

  47. Okada, T., Le Trong, I., Fox, B. A., Behnke, C. A., Stenkamp, R. E., and Palczewski, K. (2000) X-ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J. Struct. Biol. 130, 73–80.

    Article  CAS  PubMed  Google Scholar 

  48. Lemieux, M. J., Song, J., Kim, M. J., et al. (2003) Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Prot. Sci. 12, 2748–2756.

    Article  CAS  Google Scholar 

  49. Joanne Lemieux, M., Reithmeier, R. A. F., and Wang, D. N. (2002) Importance of detergent and phospholipid in the crystallization of the human erythrocyte anionexchanger membrane domain. J. Struct. Biol. 137, 322–332.

    Google Scholar 

  50. Pierre, Y., Breyton, C., Kramer, D., and Popot, J. L. (1995) Purification and Characterization of the Cytochrome b(6)f Complex from Chlamydomonas reinhardtii. J. Biol. Chem. 270, 29,342–29,349.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, H., Kurisu, G., Smith, J. L., and Cramer, W. A. (2003) A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b6f complex of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 100, 5160–5163.

    Article  CAS  PubMed  Google Scholar 

  52. Landau, E. and Rosenbusch, J. P. (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14,532–14,535.

    Article  CAS  PubMed  Google Scholar 

  53. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., and Lanyi, J. K. (1999) Structure of bacteriorhodopsin at 1.55Å resolution. J. Mol. Biol. 291, 899–911.

    Article  CAS  PubMed  Google Scholar 

  54. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., and Landau, E. (1997) X-ray structure of bacteriorhodopsin at 2.5Å from microcrystals grown in lipidic cubic phase. Science 277, 1676–1681.

    Article  CAS  PubMed  Google Scholar 

  55. Kolbe, M., Besir, H., Essen, L. O., and Oesterhelt, D. (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8Å resolution. Science 288, 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  56. Cherezov, V., Fersi, H., and Caffrey, M. (2001) Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys. J. 81, 225–242.

    Article  CAS  PubMed  Google Scholar 

  57. Landau, E. (2003) In cubo crystallization of membrane proteins. In: Membrane Protein Purification and Crystallization: A Practical Guide, (Hunte, C., von Jagow, G., and Schägger, H., eds.), Academic Press, Amsterdam, The Netherlands, pp. 285–302.

    Chapter  Google Scholar 

  58. Ostermeier, C., Iwata, S., Ludwig, B., and Michel, H. (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat. Struct. Biol. 2, 842–846.

    Article  CAS  PubMed  Google Scholar 

  59. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669.

    Article  CAS  PubMed  Google Scholar 

  60. Hunte, C. (2001) Insights from the structure of the yeast cytochrome bc1 complex: crystallization of membrane proteins with antibody fragments. FEBS Lett. 504, 126–132.

    Article  CAS  PubMed  Google Scholar 

  61. Dutzler, R., Campbell, E. B., and MacKinnon, R. (2003) Gating the selectivity filter in ClC chloride channels. Science 300, 108–112.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou, Y., Morais-Cabral, J. H., Kaufman, A., and MacKinnon, R. (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48.

    Article  CAS  PubMed  Google Scholar 

  63. Carpentier, E., Lebesgue, D., Kamen, A. A., Hogue, M., Bouvier, M., and Durocher, Y. (2001) Increased production of active human beta(2)-adrenergic/G(alphas) fusion receptor in Sf-9 cells using nutrient limiting conditions. Prot. Express. Purif. 23, 66–74.

    Article  CAS  Google Scholar 

  64. Prive, G. G., Verner, G. E., Weitzman, C., Zen, K. H., Eisenberg, D., and Kaback, R. H. (1994) Fusion proteins as tools for crystallization: the Lactose permease from Escherichia coli. Acta Crystallogr. D. 50, 375–379.

    Article  CAS  PubMed  Google Scholar 

  65. Byrne, B., Abramson, J., Jansson, M., Holmgren, E., and Iwata, S. (2000) Fusion protein approach to improve the crystal quality of cytochrome bo3 ubiquinol oxidase from Escherichia coli. Biochim. Biophys. Acta 1459, 449–455.

    Article  CAS  PubMed  Google Scholar 

  66. Garman, E. F. and Schneider, T. R. (1997) Macromolecular cryocrystallography. J. Appl. Cryst. 30, 211–237.

    Article  Google Scholar 

  67. Horsefield, R., Yankovskaya, V., Tornroth, S., et al. (2003) Using rational screening and electron microscopy to optimize the crystallization of succinate:ubiquinone oxidoreductase from Escherichia coli. Acta Crystallogr. D. 59, 600–602.

    Article  PubMed  CAS  Google Scholar 

  68. Werten, P. J. L., Hasler, L., Koenderink, J. B., et al. (2001) Large-scale purification of functional recombinant human aquaporin-2. FEBS Lett. 504, 200–205.

    Article  CAS  PubMed  Google Scholar 

  69. Rummel, G., Hardmeyer, A., Widmer, C., et al. (1998) Lipidic cubic phases: new matrices for the three-dimensional crystallization of membrane proteins. J. Struct. Biol. 121, 82–91.

    Article  CAS  PubMed  Google Scholar 

  70. le Maire, M., Champeil, P., and Moller, J. V. (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta 1508, 86–111.

    Article  PubMed  Google Scholar 

  71. Katayama, N., Kobayashi, M., Motojima, F., Inaka, K., Nozawa, T., and Miki, K. (1994) Preliminary X-ray crystallographic studies of photosynthetic reaction center from a thermophilic sulfur bacterium, Chromatium tepidum. FEBS Lett. 348, 158–160.

    Article  CAS  PubMed  Google Scholar 

  72. Pokkuluri, P. R., Laible, P. D., Deng, Y. L., Wong, T. N., Hanson, D. K., and Schiffer, M. (2002) The structure of a mutant photosynthetic reaction center shows unexpected changes in main chain orientations and quinone position. Biochemistry 41, 5998–6007.

    Article  CAS  PubMed  Google Scholar 

  73. Buchanan, S. K., Fritzsch, G., Ermler, U., and Michel, H. (1993) New crystal form of the photosynthetic reaction centre from Rhodobacter sphaeroides of improved diffraction quality. J. Mol. Biol. 230, 1311–1314.

    Article  CAS  PubMed  Google Scholar 

  74. Papiz, M. Z., Hawthornthwaite, A. M., Cogdell, R. J., et al. (1989) Crystallization and characterization of two crystal forms of the B800-850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050. J. Mol. Biol. 209, 833–835.

    Article  CAS  PubMed  Google Scholar 

  75. Koepke, J., Hu, X., Muenke, C., Schulten, K., and Michel, H. (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4, 581–597.

    Article  CAS  PubMed  Google Scholar 

  76. Krauss, N., Schubert, W. D., Klukas, O., Fromme, P., Witt, H. T., and Saenger, W. (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat. Struct. Biol. 3, 965–973.

    Article  CAS  PubMed  Google Scholar 

  77. Fromme, P. and Witt, H. T. (1998) Improved isolation and crystallization of photosystem I for structural analysis. Biochim. Biophys. Acta 1365, 175–184.

    Article  CAS  Google Scholar 

  78. Shen, J. R. and Kamiya, N. (2000) Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. Biochemistry 39, 14,739–14,744.

    Article  CAS  PubMed  Google Scholar 

  79. Tsukihara, T., Aoyama, H., Yamashita, E., et al. (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269, 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  80. Tsukihara, T., Aoyama, H., Yamashita, E., et al. (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272, 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  81. Soulimane, T., Buse, G., Bourenkov, G. P., Bartunik, H. D., Huber, R., and Than, M. E. (2000) Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus. EMBO J. 19, 1766–1776.

    Article  CAS  PubMed  Google Scholar 

  82. Xia, D., Yu, C. A., Kim, H., et al. (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66.

    Article  CAS  PubMed  Google Scholar 

  83. Yu, C. A., Xia, J. Z., Kachurin, A. M., et al. (1996) Crystallization and preliminary structure of beef heart mitochondrial cytochrome-bc1 complex. Biochim. Biophys. Acta 1275, 47–53.

    Article  PubMed  Google Scholar 

  84. Iwata, S., Lee, J. W., Okada, K., et al. (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64–71.

    Article  CAS  PubMed  Google Scholar 

  85. Hunte, C., Koepke, J., Lange, C., Manith, T., and Michel, H. (2000) Structure at 2.3 A resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Struct. Fold. and Design 8, 669–684.

    Article  CAS  Google Scholar 

  86. Abramson, J., Larsson, G., Byrne, B., Puustinen, A., Garcia-Horsman, A., and Iwata, S. (2000) Purification, crystallization and preliminary crystallographic studies of an integral membrane protein, cytochrome bo3 ubiquinol oxidase from Escherichia coli. Acta Crystallogr. D. 56, 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  87. Abramson, J., Riistama, S., Larsson, G., et al. (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7, 910–917.

    Article  CAS  PubMed  Google Scholar 

  88. Iverson, T. M., Luna-Chavez, C., Cecchini, G., and Rees, D. C. (1999) Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284, 1961–1966.

    Article  CAS  PubMed  Google Scholar 

  89. Lancaster, C. R., Kroger, A., Auer, M., and Michel, H. (1999) Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution. Nature 402, 377–385.

    Article  CAS  PubMed  Google Scholar 

  90. Luong, C., Miller, A., Barnett, J., Chow, J., Ramesha, C., and Browner, M. F. (1996) Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat. Struct. Biol. 3, 927–933.

    Article  CAS  PubMed  Google Scholar 

  91. Kurumbail, R. G., Stevens, A. M., Gierse, J. K., et al. (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384, 644–648.

    Article  CAS  PubMed  Google Scholar 

  92. Picot, D., Loll, P. J., and Garavito, R. M. (1994) The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367, 243–249.

    Article  CAS  PubMed  Google Scholar 

  93. Wendt, K. U., Feil, C., Lenhart, A., Poralla, K., and Schulz, G. E. (1997) Crystallization and preliminary X-ray crystallographic analysis of squalene-hopene cyclase from Alicyclobacillus acidocaldarius. Prot. Sci. 6, 722–724.

    Article  CAS  Google Scholar 

  94. Wendt, K. U., Poralla, K., and Schulz, G. E. (1997) Structure and function of a squalene cyclase. Science 277, 1811–1815.

    Article  CAS  PubMed  Google Scholar 

  95. Pauptit, R. A., Zhang, H., Rummel, G., Schirmer, T., Jansonius, J. N., and Rosenbusch, J. P. (1991) Trigonal crystals of porin from Escherichia coli. J. Mol. Biol. 218, 505–507.

    Article  CAS  PubMed  Google Scholar 

  96. Meyer, J. E. W., Hofnung, M., and Schulz, G. E. (1997) Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. J. Mol. Biol. 266, 761–775.

    Article  CAS  PubMed  Google Scholar 

  97. Stauffer, K. A., Page, M. G., Hardmeyer, A., Keller, T. A., and Pauptit, R. A. (1990) Crystallization and preliminary X-ray characterization of maltoporin from Escherichia coli. J. Mol. Biol. 211, 297–299.

    Article  CAS  PubMed  Google Scholar 

  98. Kreusch, A., Weiss, M. S., Welte, W., Weckesser, J., and Schulz, G. E. (1991) Crystals of an integral membrane protein diffracting to 1.8 Å resolution. J. Mol. Biol. 217, 9–10.

    Article  CAS  PubMed  Google Scholar 

  99. Vogt, J. and Schulz, G. E. (1999) The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Struct. Fold. and Design 7, 1301–1309.

    Article  CAS  Google Scholar 

  100. Pautsch, A., Vogt, J., Model, K., Siebold, C., and Schulz, G. E. (1999) Strategy for membrane protein crystallization exemplified with OmpA and OmpX. Prot. Struct. Funct. Gen. 34, 167–172.

    Article  CAS  Google Scholar 

  101. Dutzler, R., Rummel, G., Alberti, S., et al. (1999) Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Struct. Fold. and Design 7, 425–434.

    Article  CAS  Google Scholar 

  102. Zeth, K., Schnaible, V., Przybylski, M., Welte, W., Diederichs, K., and Engelhardt, H. (1998) Crystallization and preliminary X-ray crystallographic studies of the native and chemically modified anion-selective porin from Comamonas acidovorans. Acta Crystallogr. D 54, 650–653.

    Article  CAS  PubMed  Google Scholar 

  103. Vandeputte-Rutten, L., Kramer, R. A., Kroon, J., Dekker, N., Egmond, M. R., and Gros, P. (2001) Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J. 20, 5033–5039.

    Article  CAS  PubMed  Google Scholar 

  104. Prince, S. M., Feron, C., Janssens, D., et al. (2001) Expression, refolding and crystallization of the OpcA invasin from Neisseria meningitidis. Acta Crystallogr. D 57, 1164–1166.

    Article  CAS  PubMed  Google Scholar 

  105. Forst, D., Welte, W., Wacker, T., and Diederichs, K. (1998) Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat. Struct. Biol. 5, 37–46.

    Article  CAS  PubMed  Google Scholar 

  106. Forst, D., Schulein, K., Wacker, T., et al. (1993) Crystallization and preliminary X-ray diffraction analysis of ScrY, a specific bacterial outer membrane porin. J. Mol. Biol. 229, 258–262.

    Article  CAS  PubMed  Google Scholar 

  107. Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K., and Welte, W. (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282, 2215–2220.

    Article  CAS  PubMed  Google Scholar 

  108. Ferguson, A. D., Breed, J., Diederichs, K., Welte, W., and Coulton, J. W. (1998) An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12. Prot. Sci. 7, 1636–1638.

    Article  CAS  Google Scholar 

  109. Smith, B. S., Kobe, B., Kurumbail, R., et al. (1998) Crystallization and preliminary X-ray analysis of ferric enterobactin receptor FepA, an integral membrane protein from Escherichia coli. Acta Crystallogr. D. 54, 697–699.

    Article  CAS  PubMed  Google Scholar 

  110. Buchanan, S. K., Smith, B. S., Venkatramani, L., et al. (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6, 56–63.

    Article  CAS  PubMed  Google Scholar 

  111. Schiefner, A., Diederichs, K., Hashimoto, K., Boos, W., and Welte, W. (2002) Crystallization and preliminary X-ray analysis of the trehalose/maltose ABC transporter MalFGK2 from Thermococcus litoralis. Acta Crystallogr. D 58, 2147–2149.

    Article  CAS  PubMed  Google Scholar 

  112. Chen, Z., Baruch, P., Mathews, F. S., et al. (1999) Crystallization and preliminary diffraction studies of two quinoprotein alcohol dehydrogenases (ADHs): a soluble monomeric ADH from Pseudomonas putida HK5 (ADH-IIB) and a heterotrimeric membrane-bound ADH from Gluconobacter suboxydans (ADH-GS). Acta Crystallogr. D. 55, 1933–1936.

    Article  CAS  PubMed  Google Scholar 

  113. Jormakka, M., Tornroth, S., Abramson, J., Byrne, B., and Iwata, S. (2002) Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli. Acta Crystallogr. D 58, 160–162.

    Article  PubMed  CAS  Google Scholar 

  114. Fu, D., Libson, A., Miercke, L. J. W., et al. (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486.

    Article  CAS  PubMed  Google Scholar 

  115. Sui, H., Walian, P. J., Tang, G., Oh, A., and Jap, B. K. (2000) Crystallization and preliminary X-ray crystallographic analysis of water channel AQP1. Acta Crystallogr. D 56, 1198–1200.

    Article  CAS  PubMed  Google Scholar 

  116. Sui, H., Han, B. G., Lee, J. K., Walian, P., and Jap, B. K. (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878.

    Article  CAS  PubMed  Google Scholar 

  117. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B., and Hughes, C. (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919.

    Article  CAS  PubMed  Google Scholar 

  118. Yu, E. W., McDermott, G., Zgurskaya, H. I., Nikaido, H., and Koshland, D. E., Jr. (2003) Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980.

    Article  CAS  PubMed  Google Scholar 

  119. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T., and MacKinnon, R. (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294.

    Article  CAS  PubMed  Google Scholar 

  120. Jiang, Y., Lee, A., Chen, J., et al. (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41.

    Article  CAS  PubMed  Google Scholar 

  121. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522.

    Article  CAS  PubMed  Google Scholar 

  122. Schertler, G. F., Lozier, R., Michel, H., and Oesterhelt, D. (1991) Chromophore motion during the bacteriorhodopsin photocycle: polarized absorption spectroscopy of bacteriorhodopsin and its M-state in bacteriorhodopsin crystals. EMBO J. 10, 2353–2361.

    CAS  PubMed  Google Scholar 

  123. Essen, L. O., Siegert, R., Lehmann, W. D., and Oesterhelt, D. (1998) Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc. Natl. Acad. Sci. USA 95, 11,673–11,678.

    Article  CAS  PubMed  Google Scholar 

  124. Snijder, H. J., Ubarretxena-Belandia, I., Blaauw, M., et al. (1999) Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401, 717–721.

    Article  CAS  PubMed  Google Scholar 

  125. Binda, C., Newton-Vinson, P., Hubalek, F., Edmondson, D. E., and Mattevi, A. (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat. Struct. Biol. 9, 22–26.

    Article  CAS  PubMed  Google Scholar 

  126. Gouaux, J. E., Braha, O., Hobaugh, M. R., et al. (1994) Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc. Natl. Acad. Sci. USA 91, 12,828–12,831.

    Article  CAS  PubMed  Google Scholar 

  127. Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615.

    Article  CAS  PubMed  Google Scholar 

  128. Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C., and Cravatt, B. F. (2002) Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298, 1793–1796.

    Article  CAS  PubMed  Google Scholar 

  129. Jormakka, M., Byrne, B., and Iwata, S. (2003) Formate dehydrogenase: a versatile enzyme in changing environments. Curr. Opin. Struct. Biol. 13, 418–423.

    Article  CAS  PubMed  Google Scholar 

  130. Stock, D., Leslie, A. G., and Walker, J. E. (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705.

    Article  CAS  PubMed  Google Scholar 

  131. Bertero, M. G., Rothery, R. A., Palak, M., et al. (2003) Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat. Struct. Biol. 10, 681–687.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Féthière, J. (2007). Three-Dimensional Crystallization of Membrane Proteins. In: Walker, J.M., Doublié, S. (eds) Macromolecular Crystallography Protocols. Methods in Molecular Biology, vol 363. Humana Press. https://doi.org/10.1007/978-1-59745-209-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-209-0_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-292-6

  • Online ISBN: 978-1-59745-209-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics