Skip to main content

Epigenetic Alterations of the Dopaminergic System in Major Psychiatric Disorders

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 448))

Summary

Although there is evidence to link schizophrenia (SCZ) and bipolar disorder (BD) to genetic and environmental factors, specific individual or groups of genes/factors causative of the disease have been elusive to the research community. An understanding of the molecular aberrations that cause these mental illnesses requires comprehensive approaches that examine both genetic and epigenetic factors. Because of the overwhelming evidence for the role of environmental factors in the disease presentation, our initial approach involved deciphering how epigenetic changes resulting from promoter DNA methylation affect gene expression in SCZ and BD. Apparently, the central reversible but covalent epigenetic modification to DNA is derived from methylation of the cytosine residues that is potentially heritable and can affect gene expression and downstream activities. Environmental factors can influence DNA methylation patterns and hence alter gene expression. Such changes can be especially problematic in individuals with genetic susceptibilities to specific diseases. Recent reports from our laboratory provided compelling evidence that both hyper- and hypo-DNA methylation changes of the regulatory regions play critical roles in defining the altered functionality of genes in major psychiatric disorders such as SCZ and BD. In this chapter, we outline the technical details of the methods that could help to expand this line of research to assist with compiling the differential methylation-mediated epigenetic alterations that are responsible for the pathogenesis of SCZ, BD, and other mental diseases. We use the genes of the extended dopaminergic (DAergic) system such as membrane-bound catechol-O-methyltransferase (MB-COMT), monoamine oxidase A (MAOA), dopamine transporter 1 (DAT1), tyrosine hydroxylase (TH), dopamine (DA) receptors1 and 2 (DRD1/2), and related genes (e.g., reelin [RELN] and brain-derived neurotrophic factor [BDNF]) to illustrate the associations between differential promoter DNA methylations and disease phenotype. It is our hope that comprehensive analyses of the DAergic system as the prototype could provide the impetus and molecular basis to uncover early markers for diagnosis, help in the understanding of differences in disease severity in individuals with similar or identical genetic makeup, and assist with the identification of novel targets for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kravariti, E., Dixon, T., Frith, C., Murray, R., and McGuire, P. (2005) Association of symptoms and executive function in schizophrenia and bipolar disorder. Schizophr. Res. 74, 221–231.

    Article  PubMed  Google Scholar 

  2. Sadock, B., and Sadock., V. (2005): Kaplan and Sadock's comprehensive textbook of psychiatry, vol. 1. Philadelphia: Lippincott, Williams & Wilkins; pp. 236–272, 1330–1395.

    Google Scholar 

  3. Abdolmaleky, H. M., Thiagalingam, S., and Wilcox, M. (2005) Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications and future scope. Am. J. Pharmacogenomics. 5, 1175–2203.

    Article  Google Scholar 

  4. Pfaff, D. W., Berrettini, W. H., Joh, T. H., and Maxson S. C. (2000) Genetic influences on neural and behavioral functions. New York: CRC Press.

    Google Scholar 

  5. Tasman, A., Key, J., and Lieberman, J. (2003) Psychiatry, 2nd ed. West Sussex, UK: Wiley; vol. 1, pp. 254–272.

    Google Scholar 

  6. Pyeritz, R. E. (1989) Pleiotropy revisited: molecular explanations of a classic concept. Am. J. Med. Genet. 34, 24–34.

    Google Scholar 

  7. Russo, V., Martienssen, R., and Riggs, A. (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  8. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.

    Article  CAS  PubMed  Google Scholar 

  9. Craddock, N., O'Donovan, M. C., and Owen, M. J. (2005). The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J. Med. Genet. 42, 193–204.

    Article  CAS  PubMed  Google Scholar 

  10. Petronis, A. (2000) The genes for major psychosis: aberrant sequence or regulation? Neuropsychopharmacology. 23, 1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Abdolmaleky, H. M., Smith, C.L., Faraone, S.V., et al. (2004) Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am. J. Med. Genet. 127B, 51–59.

    Article  PubMed  Google Scholar 

  12. Kandel, E. R. (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science. 294, 1030–1038.

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y. Y., Simpson, E., Kellendonk C., and Kandel E. R. (2004) Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors. Proc. Natl. Acad. Sci. U. S. A. 101, 3236–3241.

    Article  CAS  PubMed  Google Scholar 

  14. Martinowich, K., Hattori, D., Wu, H., et al. (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 302, 890–893.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, W. G., Chang, Q., Lin, Y., et al. (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science. 302, 885–889.

    Article  CAS  PubMed  Google Scholar 

  16. Dennis, K. E., and Levitt, P. (2005) Regional expression of brain derived neurotrophic factor (BDNF) is correlated with dynamic patterns of promoter methylation in the developing mouse forebrain. Brain Res. Mol. Brain Res. 140, 1–9.

    Article  CAS  PubMed  Google Scholar 

  17. Weaver, I. C., Cervoni, N., Champagne, F. A., et al. (2004) Epigenetic programming by maternal behavior. Nat. Neurosci. 8, 847–854.

    Article  Google Scholar 

  18. Murray, R., Granner, D., Mayes, P., and Rodwell, V. (2000) Harper's biochemistry. New York: McGraw-Hill/Appleton & Lange.

    Google Scholar 

  19. Thomassin, H., Flavin, M., Espinas, M. L., and Grange, T. (2001) Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J. 20, 1974–1983.

    Article  CAS  PubMed  Google Scholar 

  20. Monk, M. (1995) Epigenetic programming of differential gene expression in development and evolution. Dev. Genet. 17, 188–197.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, G. D., Ni, J., Kelesoglu, N., Roberts, R. J., and Pradhan, S. (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltrans-ferases. EMBO J. 21, 4183–4195.

    Article  CAS  PubMed  Google Scholar 

  22. Kress, C., Thomassin, H., and Grange, T (2001) Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Lett. 494,135–140.

    Article  CAS  PubMed  Google Scholar 

  23. Fang, M. Z., Wang, Y., Ai, N., et al. (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563–7570.

    CAS  PubMed  Google Scholar 

  24. Bonsch, D., Lenz, B., Kornhuber, J., and Bleich, S. (2005) DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport. 16, 167–170.

    Article  PubMed  Google Scholar 

  25. Bonsch, D., Lenz, B., Fiszer, R., Frieling, H., Kornhuber, J., and Bleich, S. (2006) Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J. Neural Transm. 113, 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  26. Bleich, S., Lenz, B., Ziegenbein, M., et al. (2006) Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol. Clin. Exp. Res. 30, 587–591.

    Article  CAS  PubMed  Google Scholar 

  27. Abdolmaleky, H. M., Cheng, K. H., Russo, A., et al. (2005) Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am. J. Med. Genet. B Neuropsychiatr. Genet. 134B, 60–66.

    Article  PubMed  Google Scholar 

  28. Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., et al. (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum. Mol. Genet. 15, 3132–3145.

    CAS  Google Scholar 

  29. Goldstein, J. M., Goodman, J. M., Seidman, L. J., et al. (1999) Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch. Gen. Psychiatry. 56, 537–547.

    Article  CAS  PubMed  Google Scholar 

  30. Sharafi, M. (2005) Comparison of classical and clozapine treatment on schizophrenia using positive and negative syndrome scale of schizophrenia (PANSS) and SPECT imaging. Int. J. Med. Sci. 2, 79–86.

    CAS  PubMed  Google Scholar 

  31. Grayson, D. R., Jia, X., Chen, Y., et al. (2005) Reelin promoter hypermethylation in schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 102, 9341–9346.

    Article  CAS  PubMed  Google Scholar 

  32. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U. S. A. 93, 9821–9826.

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki, M., Kaneuchi, M., Sakuragi, N., and Dahiya, R. (2003) Multiple promoters of catechol-O-methyltransferase gene are selectively inactivated by CpG hypermethylation in endometrial cancer. Cancer Res. 63, 3101–3106.

    CAS  PubMed  Google Scholar 

  34. Weber, M., Davies, J. J., Wittig, D., et al. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862.

    Article  CAS  PubMed  Google Scholar 

  35. Frommer, M., McDonald, L. E., Millar, D. S., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. 89, 1827–1831.

    Article  CAS  PubMed  Google Scholar 

  36. Derks, S., Lentjes, M. H., Hellebrekers, D. M., de Bruine, A. P., Herman, J. G., and van Engeland, M. (2004) Methylation-specific PCR unraveled. Cell Oncol. 26, 291–299.

    CAS  PubMed  Google Scholar 

  37. Galm, O., and Herman, J. G. (2005) Methylation-specific polymerase chain reaction. Methods Mol. Med. 113, 279–291.

    CAS  PubMed  Google Scholar 

  38. Lewin, J., Schmitt, A. O., Adorjan, P., Hildmann, T., and Piepenbrock, C. (2004) Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics. 20, 3005–3012.

    Article  CAS  PubMed  Google Scholar 

  39. Iwamoto, K., Bundo, M., Yamada, K., et al. (2005) DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J. Neurosci. 25, 5376–5381.

    Article  CAS  PubMed  Google Scholar 

  40. Singal, R., and Ginder, G. D. (1999) DNA methylation. Blood. 93, 4059–4070.

    CAS  PubMed  Google Scholar 

  41. Li, L. C., and Dahiya, R. (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics. 18, 1427–1431.

    Article  CAS  PubMed  Google Scholar 

  42. Eckhardt, F., Lewin, J., Cortese, R., et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet. 38, 1378–1385.

    Article  CAS  PubMed  Google Scholar 

  43. Trinh, B. N., Long, T. I., and Laird, P. W. (2001) DNA methylation analysis by MethyLight technology. Methods. 25, 456–462.

    Article  CAS  PubMed  Google Scholar 

  44. Chan, M. W., Chu, E. S., To, K. F., and Leung, W. K. (2004) Quantitative detection of methylated SOCS-1, a tumor suppressor gene, by a modified protocol of quantitative real time methylation-specific PCR using SYBR green and its use in early gastric cancer detection. Biotechnol. Lett. 26, 1289–1293.

    Article  CAS  PubMed  Google Scholar 

  45. Fackler, M. J., McVeigh, M., Mehrotra, J., et al. (2004) Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res. 64, 4442–4452.

    Article  CAS  PubMed  Google Scholar 

  46. Swift-Scanlan, T., Blackford, A., Argani, P., Sukumar, S., and Fackler, M. J. (2006) Two-color quantitative multiplex methylation-specific PCR. Biotechniques. 40, 210–219.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Abdolmaleky, H.M., Smith, C.L., Zhou, JR., Thiagalingam, S. (2008). Epigenetic Alterations of the Dopaminergic System in Major Psychiatric Disorders. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology™, vol 448. Humana Press. https://doi.org/10.1007/978-1-59745-205-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-205-2_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-887-4

  • Online ISBN: 978-1-59745-205-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics