Skip to main content

Cell-Free Expression for Nanolipoprotein Particles: Building a High-Throughput Membrane Protein Solubility Platform

  • Protocol
High Throughput Protein Expression and Purification

Summary

Membrane-associated proteins and protein complexes account for approximately a third or more of the proteins in the cell (1, 2). These complexes mediate essential cellular processes; including signal transduc-tion, transport, recognition, bioenergetics and cell–cell communication. In general, membrane proteins are challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment. This chapter is focused on describing a novel method for producing and solubilizing membrane proteins that can be easily adapted to high-throughput expression screening. This process is based on cell-free transcription and translation technology coupled with nanolipoprotein par ticles (NLPs), which are lipid bilayers confined within a ring of amphipathic protein of defined diameter. The NLPs act as a platform for inserting, solubilizing and characterizing functional membrane proteins. NLP component proteins (apolipoproteins), as well as membrane proteins can be produced by either traditional cell-based or as discussed here, cell-free expression methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drews, J. (2000) Drug discovery: a historical perspective Science287, 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  2. Wallin, E., and von Heijne, G. (1998) Genome wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms Protein Sci 7, 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  3. Klammt, C., Schwarz, D., Eifler, N., Engel, A., Piehler, J., Haase, W., Hahn, S., Dot sch, V., and Bernhard, F. (2007) Cell-free production of G protein-coupled receptors for functional and structural studies J Struct Biol158, 482–493.

    Article  CAS  PubMed  Google Scholar 

  4. Schwarz, D., Klammt, C., Koglin, A., Lohr, F., Schneider, B., Dotsch, V., and Bernhard, F. (2007) Preparative scale cell-free expres sion systems: New tools for the large scale preparation of integral membrane proteins for functional and structural studies Methods 41, 355–369.

    Article  CAS  PubMed  Google Scholar 

  5. Kantardjieff, K. A., Hochtl, P., Segelke, B. W., Tao, F. M., and Rupp, B. (2002) Concanava lin A in a dimeric crystal form: revisiting struc tural accuracy and molecular flexibility Acta Crystallogr D Biol Crystallogr58, 735–743.

    Article  PubMed  Google Scholar 

  6. Kigawa, T., Yabuki, T., and Yokoyama, S. (1999) [Large-scale protein preparation using the cell-free synthesis] Tanpakushitsu Kakusan Koso 44, 598–605.

    CAS  PubMed  Google Scholar 

  7. Sawasaki, T., Hasegawa, Y., Tsuchimochi, M., Kamura, N., Ogasawara, T., Kuroita, T., and Endo, Y. (2002) A bilayer cell-free pro tein synthesis system for high-throughput screening of gene products FEBS Lett514, 102–105.

    Article  CAS  PubMed  Google Scholar 

  8. Frydman, J., and Hartl, F. U. (1996) Prin ciples of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms Science 272, 1497–1502.

    Article  CAS  PubMed  Google Scholar 

  9. Tsalkova, T., Zardeneta, G., Kudlicki, W., Kramer, G., Horowitz, P. M., and Hardesty, B. (1993) GroEL and GroES increase the specific enzymatic activity of newly-synthe sized rhodanese if present during in vitro transcription/translation Biochemistry 32, 3377–3380.

    Article  CAS  PubMed  Google Scholar 

  10. Klammt, C., Lohr, F., Schafer, B., Haase, W., Dotsch, V., Ruterjans, H., Glaubitz, C., and Bernhard, F. (2004) High level cell-free expression and specific labeling of integral membrane proteins Eur J Biochem271, 568–580.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, D. M., and Swartz, J. R. (2004) Effi cient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli Biotechnol Bioeng 85, 122–129.

    Article  CAS  PubMed  Google Scholar 

  12. Ishihara, G., Goto, M., Saeki, M., Ito, K., Hori, T., Kigawa, T., Shirouzu, M., and Yokoyama, S. (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin fusion vectors Protein Expr Purif 41, 27–37.

    Article  CAS  PubMed  Google Scholar 

  13. Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dotsch, V., and Bernhard, F. (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expres sion system Febs J 272, 6024–6038.

    Article  CAS  PubMed  Google Scholar 

  14. Martin, T. A., Harding, K., and Jiang, W. G. (2001) Matrix-bound fibroblasts regulate angiogenesis by modulation of VE-cadherin Eur J Clin Invest 31, 931–938.

    Article  CAS  PubMed  Google Scholar 

  15. Keppetipola, N., and Shuman, S. (2006) Mechanism of the phosphatase component of Clostridium thermocellum polynucle otide kinase-phosphatase RNA 12, 73–82.

    Article  CAS  PubMed  Google Scholar 

  16. Yokoyama, S. (2003) Protein expression sys tems for structural genomics and proteom ics Curr Opin Chem Biol 7, 39–43.

    Article  CAS  PubMed  Google Scholar 

  17. Bayburt, T. H., Carlson, J. W., and Sligar, S. G. (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phos-pholipid bilayer J Struct Biol 123, 37–44.

    Article  CAS  PubMed  Google Scholar 

  18. Bayburt, T. H., and Sligar, S. G. (2002) Single-molecule height measurements on microsomal cytochrome P450 in nanom eter-scale phospholipid bilayer disks Proc Natl Acad Sci USA99, 6725–6730.

    Article  CAS  PubMed  Google Scholar 

  19. Bayburt, T. H., and Sligar, S. G. (2003) Self-assembly of single integral membrane proteins into soluble nanoscale phospholi pid bilayers Protein Sci 12, 2476–2481.

    Article  CAS  PubMed  Google Scholar 

  20. Civjan, N. R., Bayburt, T. H., Schuler, M. A., and Sligar, S. G. (2003) Direct solubiliza tion of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers Biotechniques 35, 556–560, 562–563.

    CAS  PubMed  Google Scholar 

  21. Chromy, B. A., Arroyo, E., Blanchette, C. D., Bench, G., Benner, H., Cappuc cio, J. A., Coleman, M. A., Henderson, P. T., Hinz, A. K., Kuhn, E. A., Pesavento, J. B., Segelke, B. W., Sulchek, T. A., Tarasow, T., Walsworth, V. L., and Hoeprich, P. D. (2007) Different Apolipoproteins Impact Nanolipoprotein Particle Formation J Am Chem Soc129, 14348–14354.

    Article  CAS  PubMed  Google Scholar 

  22. Bayburt, T. H., Grinkova, Y. V., and Sligar, S. G. (2006) Assembly of single bacteriorho dopsin trimers in bilayer nanodiscs Arch Biochem Biophys 450, 215–222.

    Article  CAS  PubMed  Google Scholar 

  23. Shaw, A. W., McLean, M. A., and Sligar, S. G. (2004) Phospholipid phase transitions in homogeneous nanometer scale bilayer discs FEBS Lett 556, 260–264.

    Article  CAS  PubMed  Google Scholar 

  24. Gursky, O., Ranjana, and Gantz, D. L. (2002) Complex of human apolipoprotein C-1 with phospholipid: thermodynamic or kinetic stability? Biochemistry 41, 7373–7384.

    Article  CAS  PubMed  Google Scholar 

  25. Jayaraman, S., Gantz, D., and Gursky, O. (2005) Structural basis for thermal stability of human low-density lipoprotein Biochem istry 44, 3965–3971.

    Article  CAS  Google Scholar 

  26. Jonas, A. (1986) Reconstitution of high-density lipoproteins Methods Enzymol 128, 553–582.

    Article  CAS  PubMed  Google Scholar 

  27. Jonas, A., Kezdy, K. E., and Wald, J. H. (1989) Defined apolipoprotein A-I conformations in reconstituted high density lipoprotein discs J Biol Chem 264, 4818–4824.

    CAS  PubMed  Google Scholar 

  28. Peters-Libeu, C. A., Newhouse, Y., Hat ters, D. M., and Weisgraber, K. H. (2006) Model of biologically active apolipoprotein E bound to dipalmitoylphosphatidylcholine J Biol Chem 281, 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  29. Whorton, M. R., Bokoch, M. P., Rasmussen, S. G., Huang, B., Zare, R. N., Kobilka, B., and Sunahara, R. K. (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA104, 7682–7687.

    Article  CAS  PubMed  Google Scholar 

  30. Tufteland, M., Pesavento, J. B., Bermingham, R. L., Hoeprich, P. D., Jr., and Ryan, R. O. (2007) Peptide stabilized amphotericin B nanodisks. Peptides 28, 741–746.

    Article  CAS  PubMed  Google Scholar 

  31. Cruz, F., and Edmondson, D. E. (2007) Kinetic properties of recombinant MAO-A on incorporation into phospholipid nano-disks. J Neural Transm 114, 699–702.

    Article  CAS  PubMed  Google Scholar 

  32. Boldog, T., Grimme, S., Li, M., Sligar, S. G., and Hazelbauer, G. L. (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci USA 103, 11509–11514.

    Article  CAS  PubMed  Google Scholar 

  33. Forstner, M., Peters-Libeu, C., Contreras-Forrest, E., Newhouse, Y., Knapp, M., Rupp, B., and Weisgraber, K. H. (1999) Carboxyl terminal domain of human apolipoprotein E: expression, purification, and crystalliza tion. Protein Expr Purif 17, 267–272.

    Article  CAS  PubMed  Google Scholar 

  34. Morrow, J. A., Arnold, K. S., and Weisgraber, K. H. (1999) Functional characterization of apolipoprotein E isoforms overexpressed in Escherichia coli. Protein Expr Purif16, 224–230.

    Article  CAS  PubMed  Google Scholar 

  35. Coleman, M. A., Lao, V. H., Segelke, B. W., and Beernink, P. T. (2004) High-throughput, fluorescence-based screening for soluble pro tein expression. J Proteome Res3, 1024–1032.

    Article  CAS  PubMed  Google Scholar 

  36. Sonar, S., Patel, N., Fischer, W., and Roth schild, K. J. (1993) Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein. Biochemistry32, 13777–13781.

    Article  CAS  PubMed  Google Scholar 

  37. Segelke, B. W., Schafer, J., Coleman, M. A., Lekin, T. P., Toppani, D., Skowronek, K. J., Kantardjieff, K. A., and Rupp, B. (2004) Laboratory scale structural genom ics. J Struct Funct Genomics 5, 147–157.

    Article  CAS  PubMed  Google Scholar 

  38. Klammt, C., Schwarz, D., Lohr, F., Sch neider, B., Dotsch, V., and Bernhard, F. (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J273, 4141–4153.

    Article  CAS  PubMed  Google Scholar 

  39. Sonar, S., Marti, T., Rath, P., Fischer, W., Coleman, M., Nilsson, A., Khorana, H. G., and Rothschild, K. J. (1994) A redirected proton pathway in the bacteriorhodopsin mutant Tyr-57→Asp. Evidence for proton translocation without Schiff base deproto nation. J Biol Chem 269, 28851–28858.

    CAS  PubMed  Google Scholar 

  40. Camarero, J. A., Kwon, Y., and Coleman, M. A. (2004) Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for “protein chip” fabrication. J Am Chem Soc 126, 14730–14731.

    Article  CAS  PubMed  Google Scholar 

  41. Rao, R. S., Visuri, S. R., McBride, M. T., Albala, J. S., Matthews, D. L., and Coleman, M. A. (2004) Comparison of multiplexed techniques for detection of bacterial and viral proteins. J Proteome Res 3, 736–742.

    Article  CAS  PubMed  Google Scholar 

  42. Wang, J., Link, S., Heyes, C. D., and El-Sayed, M. A. (2002) Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. Biophys J 83, 1557–1566.

    Article  CAS  PubMed  Google Scholar 

  43. Bayburt, T. H., Leitz, A. J., Xie, G., Oprian, D. D., and Sligar, S. G. (2007) Transducin activation by nanoscale lipid bilayers contai ning one and two rhodopsins. J Biol Chem 282, 14875–14881.

    Article  CAS  PubMed  Google Scholar 

  44. Baas, B. J., Denisov, I. G., and Sligar, S. G. (2004) Homotropic cooperativity of mono meric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430, 218–228.

    Article  CAS  PubMed  Google Scholar 

  45. Leitz, A. J., Bayburt, T. H., Barnakov, A. N., Springer, B. A., and Sligar, S. G. (2006) Functional reconstitution of Beta2-adrener-gic receptors utilizing self-assembling Nano-disc technology. Biotechniques 40, 601–602, 04, 06, passim.

    Article  CAS  PubMed  Google Scholar 

  46. Nath, A., Atkins, W. M., and Sligar, S. G. (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059–2069.

    Article  CAS  PubMed  Google Scholar 

  47. Coleman, M., Nilsson, A., Russell, T. S., Rath, P., Pandey, R., and Rothschild, K. J. (1995) Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorho dopsin. Biochemistry34, 15599–15606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52—07NA27344, with support from the Labora tory Directed Research and Development Office (LDRD) 06-SI-003 awarded to PDH. UCRL-BOOK-235838. The authors are grateful to Drs. Karl Weisgraber and Robert Ryan for helpful discussions and providing reagents.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cappuccio, J.A. et al. (2009). Cell-Free Expression for Nanolipoprotein Particles: Building a High-Throughput Membrane Protein Solubility Platform. In: Doyle, S.A. (eds) High Throughput Protein Expression and Purification. Methods in Molecular Biology, vol 498. Humana Press. https://doi.org/10.1007/978-1-59745-196-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-196-3_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-879-9

  • Online ISBN: 978-1-59745-196-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics