Skip to main content

High-Throughput Insect Cell Protein Expression Applications

  • Protocol
High Throughput Protein Expression and Purification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 498))

Summary

The Baculovirus Expression Vector System (BEVS) is one of the most efficient systems for production of recombinant proteins and consequently its application is wide-spread in industry as well as in academia. Since the early 1970s, when the first stable insect cell lines were established and the infectivity of bacu-lovirus in an in vitro culture system was demonstrated (1, 2), virtually thousands of reports have been published on the successful expression of proteins using this system as well as on method improvement. However, despite its popularity the system is labor intensive and time consuming. Moreover, adaptation of the system to multi-parallel (high-throughput) expression is much more difficult to achieve than with E. coli due to its far more complex nature. However, recent years have seen the development of strategies that have greatly enhanced the stream-lining and speed of baculovirus protein expression for increased throughput via use of automation and miniaturization. This chapter therefore tries to collate these developments in a series of protocols (which are modifications to standard procedure plus several new approaches) that will allow the user to expedite the speed and throughput of baculovirus-mediated protein expression and facilitate true multi-parallel, high-throughput protein expression profiling in insect cells. In addition we also provide a series of optimized protocols for small and large-scale transient insect cell expression that allow for both the rapid analysis of multiple constructs and the concomitant scale-up of those selected for on-going analysis. Since this approach is independent of viral propagation, the timelines for this approach are markedly shorter and offer a significant advantage over standard bacu-lovirus expression approach strategies in the context of HT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaughn, J. L., Goodwin, R. H., Tompkins, G. J., and McCawley, P. (1977) Establishment of 2 Cell Lines from Insect Spodoptera-Frugiperda (Lepidoptera-Noctuidae). In Vitro-Journal of the Tissue Culture Association. 13, 213–217

    CAS  Google Scholar 

  2. Smith, G. E., Fraser, M. J., and Summers, M. D. (1983) Molecular engineering of the Autographa-Californica Nuclear Polyhedrosis-virus genome— deletion mutations within the polyhedrin gene. Journal of Virology. 46, 584–593

    CAS  PubMed  Google Scholar 

  3. Chambers, S. P. (2002) High-throughput protein expression for the post-genomic era. Drug Discov Today. 7, 759–765

    Article  CAS  PubMed  Google Scholar 

  4. Hunt, I. (2005) From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expression and Purification. 40, 1–22

    Article  CAS  PubMed  Google Scholar 

  5. Pijlman, G. P., van Schijndel, J. E., and Vlak, J. M. (2003) Spontaneous excision of BAC vector sequences from bacmid-derived bac-ulovirus expression vectors upon passage in insect cells. Journal of General Virology. 84, 2669–2678

    Article  CAS  PubMed  Google Scholar 

  6. McCall, E. J., Danielsson, A., Hardern, I. M., Dartsch, C., Hicks, R., Wahlberg, J. M., and Abbott, W. M. (2005) Improvements to the throughput of recombinant protein expression in the baculovirus/insect cell system. Protein Expression and Purification. 42, 29–36

    Article  CAS  PubMed  Google Scholar 

  7. Hink, W. F. and Vail, P. V. (2004) A plaque assay for titration of alfalfa looper nuclear polyderosis virus in cabbage looper TN-368 cell line. Journal of Invertebrate Pathology. 22, 268–174

    Google Scholar 

  8. O'Reilly, D. R., Miller, L. K., and Luckow, V. A. (2004) Baculovirus expression vectors: a laboratory maunal. WH Freeman, NY

    Google Scholar 

  9. Kwon, M. S., Dojima, T., Toriyama, M., and Park, E. Y. (2002) Development of an antibody-based assay for determination of baculovirus titers in 10 hours. Biotechnology Progress. 18, 647–651

    Article  CAS  PubMed  Google Scholar 

  10. Volkman, L. E. and Goldsmith, P. A. (1981) Baculovirus bioassay not dependent upon polyhedra production. Journal of General Virology. 56, 203–206

    Article  CAS  PubMed  Google Scholar 

  11. Cha, H. J., Gotoh, T., and Bentley, W. E. (1997) Simplification of titer determination for recombinant baculovirus by green fluorescent protein marker. Biotechniques. 23, 782–786

    CAS  PubMed  Google Scholar 

  12. Eriksson, S., Raivio, E., Kukkonen, J. P., Eriksson, K., and Lindqvist, C. (1996) Green fluorescent protein as a tool for screening recombinant baculoviruses. Journal of Virological Methods. 59, 127–133

    Article  CAS  PubMed  Google Scholar 

  13. Berns, K. I. and Giraud, C. (1996) Biology of adeno-associated virus. Current Topics in Microbiology and Immunology. 218, 1–23

    CAS  PubMed  Google Scholar 

  14. Malde, V. and Hunt, I. (2004) Calculation of baculovirus titer using a microfluidic-based Bioanalyzer. Biotechniques. 36, 942–946

    CAS  PubMed  Google Scholar 

  15. O'Brien, J., Wilson, I., Orton, T., and Pognan, F. (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry. 267, 5421–5426

    Article  PubMed  Google Scholar 

  16. Pouliquen, Y., Kolbinger, F., Geisse, S., and Mahnke, M. (2006) Automated baculovirus titration assay based on viable cell growth monitoring using a colorimetric indicator. Biotechniques. 40, 282–286

    Article  CAS  PubMed  Google Scholar 

  17. Chao-Min Lu. (2006) Simple, Overnight Titration of Baculovirus and Scale-up Production of High Titer Virus Stock. Baculovirus Technology, Cambridge Health-tech Institute Meeting, Boston, September 25–26th 2006

    Google Scholar 

  18. Bahia, D., Cheung, R., Buchs, M., Geisse, S., and Hunt, I. (2005) Optimisation of insect cell growth in deep-well blocks:development of a high-throughput insect cell expression system. Protein Expression & Purification. 39, 61–70

    Article  CAS  Google Scholar 

  19. Chambers, S. P., Austen, D. A., Fulghum, J. R., and Kim, W. M. (2004) High-through put screening for soluble recombinant expressed kinases in Escherichia coli and insect cells. Protein Expression Purification. 36, 40–47

    Article  CAS  PubMed  Google Scholar 

  20. Kim, Y. K., Shin, H. S., Tomiya, N., Lee, Y. C., Betenbaugh, M. J., and Cha, H. J. (2005) Production and N-glycan analysis of secreted human erythropoietin glycoprotein in stably transfected Drosophila S2 cells. Biotechnology and Bioengineering. 92, 452–461

    Article  CAS  PubMed  Google Scholar 

  21. Shin, H. S. and Cha, H. J. (2002) Facile and statistical optimization of transfection conditions for secretion of foreign proteins from insect Drosophila S2 cells using green fluorescent protein reporter. Biotechnology Progress. 18, 1187–1194

    Article  CAS  PubMed  Google Scholar 

  22. Keith, M. B., Farrell, P. J., Iatrou, K., and Behie, L. A. (1999) Screening of transformed insect cell lines for recombinant protein production. Biotechnology Progress. 15, 1046–1052

    Article  CAS  PubMed  Google Scholar 

  23. McCarroll, L. and King, L. A. (1997) Stable insect cell cultures for recombinant protein production. Current Opinion in Biotechnology. 8, 590–594

    Article  CAS  PubMed  Google Scholar 

  24. Pfeifer, T. A. (1998) Expression of heterolo-gous proteins in stable insect cell culture. Current Opinion in Biotechnology. 9, 518–521

    Article  CAS  PubMed  Google Scholar 

  25. Douris, V., Swevers, L., Labropoulou, V., Andronopoulou, E., Georgoussi, Z., and Iatrou, K. (2006) Stably transformed insect cell lines: Tools for expression of secreted and membrane-anchored proteins and high-throughput screening platforms for drug and insecticide discovery. Insect Viruses: Biotechnological Applications. 68, 113–156

    CAS  Google Scholar 

  26. Baldi, L., Muller, N., Picasso, S., Jacquet, R., Girard, P., Thanh, H. P., Derow, E., and Wurm, F. M. (2005) Transient gene expression in suspension HEK-293 cells: Application to large-scale protein production. Biotechnology Progress. 21, 148–153

    Article  CAS  PubMed  Google Scholar 

  27. Derouazi, M., Martinet, D., Schmutz, N. B., Flaction, R., Wicht, M., Bertschinger, M., Hacker, D. L., Beckmann, J. S., and Wurm, F. M. (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochemical and Biophysical Research Communications. 340, 1069–1077

    Article  CAS  PubMed  Google Scholar 

  28. Geisse, S. and Henke, M. (2005) Large-scale transient transfection of mammalian cells: A newly emerging attractive option for recom-binant protein production. Journal of Structural and Functional Genomics. 6, 165–170

    Article  CAS  PubMed  Google Scholar 

  29. Farrell, P. and Iatrou, K. (2004) Trans-fected insect cells in suspension culture rapidly yield moderate quantities of recom-binant proteins in protein-free culture medium. Protein Expression & Purification. 36, 177–185

    Article  CAS  Google Scholar 

  30. Loomis, K. H., Yaeger, K. W., Batenjany, M. M., Mehler, M. M., Grabski, A. C., Wong, S. C., and Novy, R. E. (2005) InsectDirect System: rapid, high-level protein expression and purification from insect cells. Journal of Structural and Functional Genomics. 6, 189–194

    Article  CAS  PubMed  Google Scholar 

  31. Boussif, O., Lezoualch, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo—polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America. 92, 7297–7301

    Article  CAS  PubMed  Google Scholar 

  32. Park, T. G., Jeong, J. H., and Kim, S. W. (2006) Current status of polymeric gene delivery systems. Advanced Drug Delivery Reviews. 58, 467–486

    Article  CAS  PubMed  Google Scholar 

  33. Geisse, S. (2007) Insect Cell Cultivation and Generation of Recombinant Baculovi-rus Particles for Recombinant Protein Production. Metohds in Biotechnology: Animal Cell Biotechnology. 24, 489–507.

    Article  CAS  Google Scholar 

  34. Pfeifer, T. A., Hegedus, D. D., Grigliatti, T. A., and Theilmann, D. A. (1997) Baculovirus immediate-early promoter-mediated expression of the Zeocin resistance gene for use as a dominant selectable marker in dipteran and lepidopteran insect cell lines. Gene. 188, 183–190

    Article  CAS  PubMed  Google Scholar 

  35. Lu, M., Farrell, P. J., Johnson, R., and Iatrou, K. (1997) A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transfected insect cells. Journal of Biological Chemistry. 272, 30724–30728

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y., Yao, B., Zhu, Z., Yi, Y., Lin, X., Zhang, Z., and Shen, G. (2004) A constitutive super-enhancer: homologous region 3 of Bombyx mori nucleopolyhedrovirus. Biochemical and Biophysical Research Communication. 318, 1039–1044

    Article  CAS  Google Scholar 

  37. Sussman, D. J. (1995) 24-hour assay for estimating the titer of beta-galactosidase-expressing baculovirus. Biotechniques. 18, 50–51

    CAS  PubMed  Google Scholar 

  38. Yahata, T., Andriole, S., Isselbacher, K. J., and Shioda, T. (2000) Estimation of bacu-lovirus titer by beta-galactosidase activity assay of virus preparations. Biotechniques. 29, 214–215

    CAS  PubMed  Google Scholar 

  39. Kichler, A., Zauner, W., Ogris, M., and Wagner, E. (1998) Influence of the DNA complexation medium on the transfection Vefficiency of lipospermine/DNA particles. Gene Therapy. 5, 855–860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Brendan Kerins and Jean-Marc Schlaeppi for technical support and James Groarke for useful discussions and comments during the preparation of this manuscript. This manuscript is dedicated to the memory of Robert Cheung

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Buchs, M. et al. (2009). High-Throughput Insect Cell Protein Expression Applications. In: Doyle, S.A. (eds) High Throughput Protein Expression and Purification. Methods in Molecular Biology, vol 498. Humana Press. https://doi.org/10.1007/978-1-59745-196-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-196-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-879-9

  • Online ISBN: 978-1-59745-196-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics