Skip to main content

Small-Molecule Vascular Disrupting Agents in Cancer Therapy

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

It is now widely accepted that for any tumor to grow to macroscopic size, a change to a proangiogenic phenotype leading to the formation of new blood vessels is required. This recognition has led to the development and clinical advancement of novel antiangiogenic therapeutics in cancer management. An alternative approach to targeting the neovasculature associated with tumors is not to interfere with new vessel formation but rather to disrupt the function of the tumor vasculature after it has already been formed. Vascular disrupting agents (VDAs) are designed to cause a rapid and selective vascular shutdown in tumors. The resulting ischemia produces rapid and extensive tumor cell kill. Treatment with VDAs has been shown to lead to extensive tumor necrosis in a wide variety of tumor models. VDAs also synergize with conventional anticancer treatments including radiotherapy and chemotherapy, and recent evidence indicates that VDA treatments are complimentary to antiangiogenic therapeutics. Lead VDAs have now entered clinical trials. This chapter focuses on the background and current state of development of VDAs and emphasizes their therapeutic potential when used in combination with conventional anticancer therapies and antiangiogenic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Konerding MA, Miodonski AJ, Lametschwandtner A. Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc 1995; 9:1233–1244.

    PubMed  CAS  Google Scholar 

  2. Siemann DW, Chaplin DJ, Horsman MR. Vascular-targeting therapies for treatment of malignant disease. Cancer 2004; 100:2491–2499.

    Article  PubMed  CAS  Google Scholar 

  3. Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Cancer Res 2004; 10:415–427.

    Article  PubMed  Google Scholar 

  4. Chaplin DJ, Horsman MR, Siemann DW. Current development status of small-molecule vascular disrupting agents. Curr Opin Investig Drugs 2006; 7:522–528.

    PubMed  CAS  Google Scholar 

  5. Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR et al. Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 2005; 11:416–420.

    PubMed  CAS  Google Scholar 

  6. Woglum WH. A critique of tumour resistance. J Cancer Res 1923; 7:283–311.

    Google Scholar 

  7. Coley Nauts H, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and bacterial products (Coley’s toxins) on malignant tumours in man. Acta Med Scand 1953; 274:29–97.

    Google Scholar 

  8. Denekamp J, Hobson B. Vascular occlusion and tumour cell death. Eur J Cancer Clin Oncol 1983; 19:271–275.

    Article  PubMed  CAS  Google Scholar 

  9. Hobson B, Denekamp J. Endothelial proliferation in tumors and normal tissue: continuous labeling studies. Br J Cancer 1984; 49:405–413.

    PubMed  CAS  Google Scholar 

  10. Denekamp J. The current status of targeting tumour vasculature as a means of cancer therapy – an overview. Int J Radiat Biol 1991; 60:401–408.

    Article  PubMed  CAS  Google Scholar 

  11. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustine HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 2000; 60:1388–1393.

    PubMed  CAS  Google Scholar 

  12. Bicknell R, Harris AL. Anticancer strategies involving the vasculature: vascular targeting and the inhibition of angiogenesis. Semin Cancer Biol 1992; 3:399–407.

    PubMed  CAS  Google Scholar 

  13. Chaplin DJ, Dougherty GJ. Tumour vasculature as a target for cancer therapy. Br J Cancer 1999; 80:57–64.

    PubMed  CAS  Google Scholar 

  14. Siemann DW. Therapeutic strategies that selectively target and disrupt established tumor vasculature. Hematol Oncol Clin North Am 2004; 18:1023–1037.

    Article  PubMed  Google Scholar 

  15. Baguley BC, Ching LM. DMXAA: an antivascular agent with multiple host responses. Int J Radiat Oncol Biol Phys 2002; 54:1503–1511.

    Article  PubMed  CAS  Google Scholar 

  16. Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B et al. Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res 2001; 21:93–102.

    PubMed  CAS  Google Scholar 

  17. Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE. Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 2005; 11:1551–1562.

    Article  PubMed  CAS  Google Scholar 

  18. Beck AW, Brekken RA, Thorpe PE. Targeting inside-out phospholipids on tumor blood vessels in pancreatic cancer. In: Siemann DW, editor. Vascular-targeted therapies in oncology. London: Wiley & Sons, 2006: 179–194.

    Chapter  Google Scholar 

  19. Huang X, Bennett M, Thorpe PE. A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res 2005; 65:4408–4416.

    Article  PubMed  CAS  Google Scholar 

  20. Chaplin DJ, Pettit GR, Hill SA. Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res 1999; 19:189–195.

    PubMed  CAS  Google Scholar 

  21. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res 1999; 59:1626–1634.

    PubMed  CAS  Google Scholar 

  22. Horsman MR, Murata R. Vascular targeting effects of ZD6126 in a C3H mouse mammary carcinoma and the enhancement of radiation response. Int J Radiat Oncol Biol Phys 2003; 57:1047–1055.

    Article  PubMed  CAS  Google Scholar 

  23. Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 1997; 57:1829–1834.

    PubMed  CAS  Google Scholar 

  24. Horsman MR, Ehrnrooth E, Ladekarl M, Overgaard J. The effect of combretastatin A-4 disodium phosphate in a C3H mouse mammary carcinoma and a variety of murine spontaneous tumours. Int J Radiat Oncol Biol Phys 1998; 42:895–898.

    Article  PubMed  CAS  Google Scholar 

  25. Hori K, Saito S, Nihei Y, Suzuki M, Sato Y. Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700. Jpn J Cancer Res 1999; 90:1026–1038.

    PubMed  CAS  Google Scholar 

  26. Siemann DW, Rojiani AM. Enhancement of radiation therapy by the novel vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 2002; 53:164–171.

    Article  PubMed  CAS  Google Scholar 

  27. Blakey DC, Westwood FR, Walker M, Hughes GD, Davis PD, Ashton SE et al. Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin Cancer Res 2002; 8:1974–1983.

    PubMed  CAS  Google Scholar 

  28. Siemann DW, Rojiani AM. The vascular disrupting agent ZD6126 shows increased antitumor efficacy and enhanced radiation response in large, advanced tumors. Int J Radiat Oncol Biol Phys 2005; 62:846–853.

    Article  PubMed  CAS  Google Scholar 

  29. Shi W, Siemann DW. Preclinical studies of the novel vascular disrupting agent MN-029. Anticancer Res 2005; 25:3899–3904.

    PubMed  CAS  Google Scholar 

  30. Rojiani MV, Rojiani AM. Morphological manifestations of vascular-disrupting agents in preclinical models. In: Siemann DW, editor. Vascular-targeted therapies in oncology. London: Wiley & Sons, 2006: 81–94.

    Chapter  Google Scholar 

  31. Li L, Rojiani A, Siemann DW. Targeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapy. Int J Radiat Oncol Biol Phys 1998; 42:899–903.

    Article  PubMed  CAS  Google Scholar 

  32. Salmon HW, Siemann DW. Effect of the second-generation vascular disrupting agent OXi4503 on tumor vascularity. Clin Cancer Res 2006; 12:4090–4094.

    Article  PubMed  CAS  Google Scholar 

  33. Shi W, Siemann DW. Targeting the tumor vasculature: enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474. In Vivo 2005; 19:1045–1050.

    PubMed  CAS  Google Scholar 

  34. Sheng Y, Hua J, Pinney KG, Garner CM, Kane RR, Prezioso JA et al. Combretastatin family member OXI4503 induces tumor vascular collapse through the induction of endothelial apoptosis. Int J Cancer 2004; 111:604–610.

    Article  PubMed  CAS  Google Scholar 

  35. Hua J, Sheng Y, Pinney KG, Garner CM, Kane RR, Prezioso JA et al. Oxi4503, a novel vascular targeting agent: effects on blood flow and antitumor activity in comparison to combretastatin A-4 phosphate. Anticancer Res 2003; 23:1433–1440.

    PubMed  CAS  Google Scholar 

  36. Landuyt W, Ahmed B, Nuyts S, Theys J, Op dB, Rijnders A et al. In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int J Radiat Oncol Biol Phys 2001; 49:443–450.

    Article  PubMed  CAS  Google Scholar 

  37. Shi W, Horsman MR, Siemann DW. Combined modality approaches using vasculature-disrupting agents. In: Siemann DW, editor. Vascular-targeted therapies in oncology. London: Wiley & Sons, 2006: 123–136.

    Chapter  Google Scholar 

  38. Cliffe S, Taylor ML, Rutland M, Baguley BC, Hill RP, Wilson WR. Combining bioreductive drugs (SR 4233 or SN 23862) with the vasoactive agents flavone acetic acid or 5,6-dimethylxanthenone acetic acid. Int J Radiat Oncol Biol Phys 1994; 29:373–377.

    PubMed  CAS  Google Scholar 

  39. Lash CJ, Li AE, Rutland M, Baguley BC, Zwi LJ, Wilson WR. Enhancement of the anti-tumour effects of the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by combination with 5-hydroxytryptamine and bioreductive drugs. Br J Cancer 1998; 78:439–445.

    PubMed  CAS  Google Scholar 

  40. Pruijn FB, van Daalen M, Holford NH, Wilson WR. Mechanisms of enhancement of the antitumour activity of melphalan by the tumour-blood-flow inhibitor 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1997; 39:541–546.

    Article  PubMed  CAS  Google Scholar 

  41. Grosios K, Loadman PM, Swaine DJ, Pettit GR, Bibby MC. Combination chemotherapy with combretastatin A-4 phosphate and 5- fluorouracil in an experimental murine colon adenocarcinoma. Anticancer Res 2000; 20:229–233.

    PubMed  CAS  Google Scholar 

  42. Siemann DW, Mercer E, Lepler SE, Rojiani AM. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int J Cancer 2002; 99:1–6.

    Article  PubMed  CAS  Google Scholar 

  43. Li L, Rojiani AM, Siemann DW. Preclinical evaluations of therapies combining the vascular targeting agent combretastatin A-4 disodium phosphate and conventional anticancer therapies in the treatment of Kaposi’s sarcoma. Acta Oncol 2002; 41:91–97.

    Article  PubMed  CAS  Google Scholar 

  44. Wilson WR, Li AE, Cowan DS, Siim BG. Enhancement of tumor radiation response by the antivascular agent 5,6- dimethylxanthenone-4-acetic acid. Int J Radiat Oncol Biol Phys 1998; 42:905–908.

    Article  PubMed  CAS  Google Scholar 

  45. Murata R, Siemann DW, Overgaard J, Horsman MR. Interaction between combretastatin A4 disodium phosphate and radiation in murine tumours. Radiother Oncol 2001; 60:155–161.

    Article  PubMed  CAS  Google Scholar 

  46. Murata R, Siemann DW, Overgaard J, Horsman MR. Improved tumor response by combining radiation and the vascular damaging drug 5,6-dimethylxanthenone-4-acetic acid. Radiat Res 2001; 156:503–509.

    Article  PubMed  CAS  Google Scholar 

  47. Siemann DW, Shi W. Targeting the tumor blood vessel network to enhance the efficacy of radiation therapy. Semin Radiat Oncol 2003; 13:53–61.

    Article  PubMed  Google Scholar 

  48. Siemann DW, Horsman MR. Enhancement of radiation therapy by vascular targeting agents. Curr Opin Investig Drugs 2002; 3:1660–1665.

    PubMed  CAS  Google Scholar 

  49. Siemann DW, Horsman MR. Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert Rev Anticancer Ther 2004; 4:321–327.

    Article  PubMed  CAS  Google Scholar 

  50. Pedley RB, Hill SA, Boxer GM, Flynn AA, Boden R, Watson R et al. Eradication of colorectal xenografts by combined radioimmunotherapy and combretastatin a-4 3-O-phosphate. Cancer Res 2001; 61:4716–4722.

    PubMed  CAS  Google Scholar 

  51. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  52. Kimura K, Bowen C, Spiegel S, Gelmann EP. Tumor necrosis factor-alpha sensitizes prostate cancer cells to gamma-irradiation-induced apoptosis. Cancer Res 1999; 59:1606–1614.

    PubMed  CAS  Google Scholar 

  53. Ahmed B, Landuyt W, Griffioen AW, van Oosterom A, van den BW, Lambin P. In vivo antitumour effect of combretastatin A-4 phosphate added to fractionated irradiation. Anticancer Res 2006; 26:307–310.

    PubMed  CAS  Google Scholar 

  54. Horsman MR, Murata R, Overgaard J. Combination studies with combretastatin and radiation: effects in early and late responding normal tissues. Radiother Oncol 2002; 64:S50.

    Google Scholar 

  55. Horsman MR, Murata R. Vascular-targeting therapies and hyperthermia. In: Siemann DW, editor. Vascular-targeted therapies in oncology. London: Wiley & Sons, 2006: 137–157.

    Chapter  Google Scholar 

  56. Murata R, Overgaard J, Horsman MR. Combretastatin A-4 disodium phosphate: a vascular targeting agent that improves the anti-tumor effects of hyperthermia, radiation and mild thermoradiotherapy. Int J Radiat Oncol Biol Phys 2001; 51:1018–1024.

    Article  PubMed  CAS  Google Scholar 

  57. Eikesdahl HP, Bjerkvig R, Mella O, Dahl O. Combretastatin A-4 and hyperthermia; a patent combination for the treatment of solid tumors. Radiother Oncol 2001; 60:147–154.

    Article  Google Scholar 

  58. Gaya AM, Rustin GJ. Clinical progress in tumor vasculature-disrupting therapies. In: Siemann DW, editor. Vascular-targeted therapies in oncology. London: Wiley & Sons, 2006: 305–322.

    Chapter  Google Scholar 

  59. Young SL, Chaplin DJ. Combretastatin A4 phosphate: background and current clinical status. Expert Opin Investig Drugs 2004; 13:1171–1182.

    Article  PubMed  CAS  Google Scholar 

  60. Wedge SR, Kendrew J, Ogilvie DJ, Hennequin LF, Brave AJ, Ryan AJ et al. Combination of the VEGF receptor tyrosine kinase inhibitor ZD6474 and vascular-targeting agent ZD6126 produces an enhanced anti-tumor response. Proc Am Assoc Cancer Res, 2002; 43: 1081, Abstract.

    Google Scholar 

  61. Siemann DW, Shi W. Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int J Radiat Oncol Biol Phys 2004; 60(4):1233–1240.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Siemann, D.W., Horsman, M.R. (2008). Small-Molecule Vascular Disrupting Agents in Cancer Therapy. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics