Skip to main content

Hematopoietic Development of Human Embryonic Stem Cells in Culture

  • Protocol
Hematopoietic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 430))

Summary

The successful isolation and characterization of human embryonic stem cells (hESCs) provides a powerful tool to study the cellular and genetic mechanisms that mediate cell-fate decisions toward distinct developmental lineages. hESC-derived cells may also be suitable for novel cellular therapies. Significant progress in hematopoietic development of hESCs has demonstrated production of many types of blood cells from hESCs including myeloid, erythroid and lymphoid lineage cells, and possibly hematopoietic stem cells. Current established approaches to generate specific hematopoietic lineages are based on the initial pre-differentiation of hESCs into a heterogeneous mixture of cell populations. In this chapter, we describe two methods that have been successfully used in our laboratory: (1) co-culture with stromal cells derived from hematopoietic microenvironments and (2) x embryoid body (EB) formation. Subsequent to this early differentiation step, distinct progenitor cell populations can be derived, sorted, and utilized for further lineage-specific developmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  2. Odorico, J. A., Kaufman, D. S., and Thomson, J. A. (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, E. D. (1999) Bone marrow transplantation: a review. Semin Hematol 36, 95–103.

    CAS  PubMed  Google Scholar 

  4. Korbling, M., and Anderlini, P. (2001) Peripheral blood stem cell versus bone marrow allotransplantation: Does the source of hematopoietic stem cells matter? Blood 98, 2900–2908.

    Article  CAS  PubMed  Google Scholar 

  5. Grewal, S. S., Barker, J. N., Davies, S. M., and Wagner, J. E. (2003) Unrelated donor hematopoietic cell transplantation: Marrow or umbilical cord blood? Blood 101, 4233–4244.

    Article  CAS  PubMed  Google Scholar 

  6. Brunstein, C. G., and Wagner, J. E. (2006) Umbilical cord blood transplantation and banking. Annu Rev Med 57, 403–417.

    Article  CAS  PubMed  Google Scholar 

  7. Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., and Thomson, J. A. (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 98, 10716–10721.

    Article  CAS  PubMed  Google Scholar 

  8. Tian, X., Morris, J. K., Linehan, J. L., and Kaufman, D. S. (2004) Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp Hematol 32, 1000–1009.

    Article  CAS  PubMed  Google Scholar 

  9. Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915.

    Article  CAS  PubMed  Google Scholar 

  10. Cerdan, C., Rouleau, A., and Bhatia, M. (2004) VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103, 2504–2512.

    Article  CAS  PubMed  Google Scholar 

  11. Zambidis, E. T., Peault, B., Park, T. S., Bunz, F., and Civin, C. I. (2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106, 860–870.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., Martin, T., Rouleau, A., and Bhatia, M. (2004) Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21, 31–41.

    Article  CAS  PubMed  Google Scholar 

  13. Vodyanik, M. A., Thomson, J. A., and Slukvin, II (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 108, 2095–2105.

    Google Scholar 

  14. Vodyanik, M. A., Bork, J. A., Thomson, J. A., and Slukvin, II (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105, 617–626.

    Google Scholar 

  15. Woll, P. S., Martin, C. H., Miller, J. S., and Kaufman, D. S. (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 175, 5095–5103.

    CAS  PubMed  Google Scholar 

  16. Slukvin, II, Vodyanik, M. A., Thomson, J. A., Gumenyuk, M. E., and Choi, K. D. (2006) Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J Immunol 176, 2924–2932.

    Google Scholar 

  17. Zhan, X., Dravid, G., Ye, Z., Hammond, H., Shamblott, M., Gearhart, J., and Cheng, L. (2004) Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet 364, 163–171.

    Article  PubMed  Google Scholar 

  18. Anderson, J. S., Bandi, S., Kaufman, D. S., and Akkina, R. (2006) Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy. Retrovirology 3, 24.

    Google Scholar 

  19. Qiu, C., Hanson, E., Olivier, E., Inada, M., Kaufman, D. S., Gupta, S., and Bouhassira, E. E. (2005) Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol 33, 1450–1458.

    Article  CAS  PubMed  Google Scholar 

  20. Chang, K. H., Nelson, A. M., Cao, H., Wang, L., Nakamoto, B., Ware, C. B., and Papayannopoulou, T. (2006) Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108, 1515–1523

    Article  CAS  PubMed  Google Scholar 

  21. Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J. E., Cerdan, C., Levac, K., and Bhatia, M. (2005) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201, 1603–1614.

    Article  CAS  PubMed  Google Scholar 

  22. Tian, X., Woll, P. S., Morris, J. K., Linehan, J. L., and Kaufman, D. S. (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 24, 1370–1380.

    Article  CAS  PubMed  Google Scholar 

  23. Narayan, A. D., Chase, J. L., Lewis, R. L., Tian, X., Kaufman, D. S., Thomson, J. A., and Zanjani, E. D. (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 107, 2180–2183.

    Article  CAS  PubMed  Google Scholar 

  24. de Pooter, R. F., Cho, S. K., Carlyle, J. R., and Zuniga-Pflucker, J. C. (2003) In vitro generation of T lymphocytes from embryonic stem cell-derived prehematopoietic progenitors. Blood 102, 1649–1653.

    Article  PubMed  Google Scholar 

  25. La Motte-Mohs, R. N., Herer, E., and Zuniga-Pflucker, J. C. (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105, 1431–1439.

    Google Scholar 

  26. Collins, L. S., and Dorshkind, K. (1987) A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J Immunol 138, 1082–1087.

    CAS  PubMed  Google Scholar 

  27. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., and Carpenter, M. K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19, 971–974.

    Article  CAS  PubMed  Google Scholar 

  28. Li, F., Lu, S., Vida, L., Thomson J. A., Honig, G. R. (2001) Bone morphogenetic protein 4 induces efficient hematopoietic differentiation of rhesus monkey embryonic stem cells in vitro. Blood 98, 335–342.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tian, X., Kaufman, D.S. (2008). Hematopoietic Development of Human Embryonic Stem Cells in Culture. In: Bunting, K.D. (eds) Hematopoietic Stem Cell Protocols. Methods in Molecular Biology™, vol 430. Humana Press. https://doi.org/10.1007/978-1-59745-182-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-182-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-868-3

  • Online ISBN: 978-1-59745-182-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics