Skip to main content

Resistance to Linezolid

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

The fi rst description of oxazolidinones as antibacterials was reported by researchers from the DuPont company in 1987. Compounds Dup-105 and DuP-721 (Fig. 1) were introduced as clinical candidates with good activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, in an in vivo animal effi cacy model (1). These compounds demonstrated lethal toxicity in animal models and were not further developed (2). Researchers at Pharmacia (now Pfi zer) became interested in these molecules and began a chemistry/screening effort to improve the in vitro, in vivo, and safety profi les of oxazolidinones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slee AM, Wuonola MA, McRipley RJ, Zajac I, Bartholomew PT, Gregory WA, Forbes M. Oxazolidinones: a new class of synthetic antibacterial agents: in vitro and in vivo activities of Dup105 and Dup721. Antimicrob Agents Chemother 1987; 31:1791–1797

    PubMed  CAS  Google Scholar 

  2. Brickner SJ. Oxazolidinone antibacterial agents. Curr Pharm Des 1996; 2:175–194

    CAS  Google Scholar 

  3. Gregory WA., (DuPont), US 4461773, 1984 [Chem Abstr 1984, 101, 211126]

    Google Scholar 

  4. Gregory WA, Brittelli DR, Wang C-L, Wuonola MA, McRipley RJ, Eustice DC, Eberly VS, Bartholomew PT, Slee AM, Forbes M. Antibacterials. Synthesis and structure-activity studies of 3-aryl-2-oxooxazolidines. 1. The “B” group. J Med Chem 1989; 32:1673–1681

    Article  PubMed  CAS  Google Scholar 

  5. Barbachyn MR, Ford CW. Oxazolidinone structure-activity relationships leading to linezolid. Angew Chem Int Ed Engl 2003; 42:2010–2023

    Article  PubMed  CAS  Google Scholar 

  6. Park CH, Brittelli DR, Wang C-L, Marsh FD, Gregory WA, Wuonola MA, McRipley RJ, Eberly VS, Slee AM, Forbes M. Antibacterials. Synthesis and structure-activity studies of 3-aryl-2- oxooxazolidines. 4. Multiply-substituted aryl derivatives. J Med Chem 1992; 35:1156–1165

    Article  PubMed  CAS  Google Scholar 

  7. Eustice DC, Feldman PA, Slee AM. Mechanism of action of Dup721, a new antibacterial agent: effects on macromolecular synthesis. Biochem Biophys Res Commun 1988; 150:965–971

    Article  PubMed  CAS  Google Scholar 

  8. Eustice DC, Feldman PA, Zajac I, Slee AM. Mechanism of action of Dup 721: inhibition of an early event during initiation of protein synthesis. Antimicrob Agents Chemother 1988; 32:1218–1222

    PubMed  CAS  Google Scholar 

  9. Shinabarger DL, Marotti KR, Murray RW, Lin AH, Melchior EP, Swaney SM, Dunyak DS, Demyan WF, Buysse JM. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother 1997; 41:2132–2136

    PubMed  CAS  Google Scholar 

  10. Murray RW, Schaadt RD, Zurenko GE, Marotti KR. Ribosomes from an oxazolidinone-resistant mutant confer resistance to epere-zolid in a Staphylococcus aureus cell-free transcription —translation assay. Antimicrob Agents Chemother 1998; 42:947–950

    PubMed  CAS  Google Scholar 

  11. Swaney SM, Aoki H, Ganoza MC, Shinabarger DL. The oxazo-lidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 1998; 42:3251–3255

    PubMed  CAS  Google Scholar 

  12. Aoki H, Ke L, Poppe SM, Poel TJ, Weaver EA, Gadwood RC, Thomas RC, Shinabarger DL, Ganoza MC. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob Agents Chemother 2002; 46:1080–1085

    Article  PubMed  CAS  Google Scholar 

  13. Bobkova EV, Yan YP, Jordan DB, Kurilla MG, Pompliano DL. Catalytic properties of mutant 23S ribosomes resistant to oxazo-lidinones. J Biol Chem 2003; 278:9802–9807

    Article  PubMed  CAS  Google Scholar 

  14. Patel U, Yan YP, Hobbs FW, Jr, Kaczmarczyk J, Slee AM, Pompliano DL, Kurilla MG, Bobkova E V. Oxazolidinones mechanism of action: inhibition of the first peptide bond formation. J Biol Chem 2001; 276:37199–37205

    Article  PubMed  CAS  Google Scholar 

  15. Matassova NB, Rodnina MV, Endermann R, Kroll HP, Pleiss U, Wild H, Wintermeyer W. Ribosomal RNA is the target for oxa-zolidinones, a novel class of translational inhibitors. RNA 1999; 5:939–946

    Article  PubMed  CAS  Google Scholar 

  16. Xiong L, Kloss P, Douthwaite S, Møller Andersen N, Swaney S, Shinabarger DL, Mankin AS. Oxazolidinone resistance mutations in 23S ribosomal RNA of Escherichia coli reveal the central region of domain V as the primary site of the drug action. J Bacteriol 2000; 182:5325–5331

    Article  PubMed  CAS  Google Scholar 

  17. Prystowsky J, Siddiqui F, Chosay J, Shinabarger DL, Millichap J, Peterson LR, Noskin GA. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob Agents Chemother 2001; 45:2154–2156

    Article  PubMed  CAS  Google Scholar 

  18. Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS. Crosslinking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem 2003; 278:21972–21979

    Article  PubMed  CAS  Google Scholar 

  19. Polacek N, Gomez MJ, Ito K, Xiong L, Nakamura Y, Mankin A. The critical role of the universally conserved A2602 of 23S ribos-omal RNA in the release of the nascent peptide during translation termination. Mol Cell 2003; 11:103–112

    Article  PubMed  CAS  Google Scholar 

  20. Fines M, Leclercq R. Activity of linezolid against Gram-positive cocci possessing genes conferring resistance to protein synthesis inhibitors. J Antimicrob Chemother 2000; 45:797–802

    Article  PubMed  CAS  Google Scholar 

  21. Lin AH, Murray RW, Vidmar TJ, Marotti KR. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with the binding of chloramphenicol and lincomycin. Antimicrob Agents Chemother 1997; 41:2127–2131

    PubMed  CAS  Google Scholar 

  22. Zhou CC, Swaney SM, Shinabarger DL, Stockman BJ. 1H nuclear magnetic resonance study of oxazolidinone binding to bacterial ribosomes. Antimicrob Agents Chemother 2002; 46:625–629

    Article  PubMed  CAS  Google Scholar 

  23. Daly JS, Eliopoulos GM, Wiley S, Moellering RC Jr. Mechanism of action and in vitro and in vivo activities of S-6123, a new oxazolidinone compound. Antimicrob Agents Chemother 1988; 32:1341–1346

    PubMed  CAS  Google Scholar 

  24. Kaatz GW, Seo SM. In vitro activities of oxazolidinone compounds U-100592 and U-100766 against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 1996; 40:799–801

    PubMed  CAS  Google Scholar 

  25. Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman Hutchinson DK, Barbachyn MR, Brickner SJ. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 1996; 40:839–845

    PubMed  CAS  Google Scholar 

  26. Shinabarger D. Mechanism of action of the oxazolidinone antibacterial agents. Exp Opin Invest Drugs 1999; 8:1195–1202

    Article  CAS  Google Scholar 

  27. Kloss P, Xiong L, Shinabarger DL, Mankin AS. Resistance mutations in 23S rRNA identify the site of action of protein synthesis inhibitor, linezolid, in the ribosomal peptidyl transferase center. J Mol Biol 1999; 294:93–101

    Article  PubMed  CAS  Google Scholar 

  28. Sander P, Belova L, Kidan YG, Pfister P, Mankin AS, Böttger EC. Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Mol Micro-biol 2002; 46:1295–1304

    Article  CAS  Google Scholar 

  29. Wolter N, Smith AM, Farrell DJ et al. Novel mechanism of resistane to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother 2005; 49:3554 –3557

    Article  PubMed  CAS  Google Scholar 

  30. Long KS, Poehlsgaard J, Kehrenberg C, et al. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 2006; 50:2500–2505

    Article  PubMed  CAS  Google Scholar 

  31. Ballow CH, Jones RN, Biedenbach DJ, the North American ZAPS Research Group. A multicenter evaluation of linezolid antimicrobial activity in North America. Diagn Microbiol Infect Dis 2002; 43:75–83

    Article  PubMed  CAS  Google Scholar 

  32. Critchley IA, Draghi DC, Sahm DF, Thornsberry C, Jones ME, Karlowsky JA. Activity of daptomycin against susceptible and multidrug-resistant Gram-positive pathogens collected in the SECURE study (Europe) during 2000–2001. J Antimicrob Chemother 2003; 51:639–649

    Article  PubMed  CAS  Google Scholar 

  33. Richter SS, Kealy DE, Murray CT, Heilmann KP, Coffman SL, Doern GV. The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother 2003; 52:123–127

    Article  PubMed  CAS  Google Scholar 

  34. Mutnick AH, Biedenbach DJ, Turnidge JD, Jones RN. Spectrum and potency of a new oxazolidinone, linezolid: report from the SENTRY Antimicrobial Surveillance Program, 1998–2000. Diagn Microbiol Infect Dis 2002; 43:65–73

    Article  PubMed  CAS  Google Scholar 

  35. Henwood CJ, Livermore DM, Johnson AP, James D, Warner M, Gardiner A, the Linezolid Study Group. Susceptibility of Gram-positive cocci from 25 UK hospitals to antimicrobial agents including linezolid. J Antimicrob Chemother 2000; 46:931–940

    Article  PubMed  CAS  Google Scholar 

  36. Zhanel GG, Liang NM, Nichol KA, Palatnick LP, Noreddin A, Hisanag T, Johnson JL, Hoban DJ, NAVRESS Group. Antibiotic activity against urinary tract infection isolates of vancomycin-resistant enterococci: results from the 2002 North American Vancomycin Resistant Enterococci Susceptibility Study (NAVRESS). J Antimicrob Chemother 2003; 52:382–388

    Article  PubMed  CAS  Google Scholar 

  37. Luh KT, Hsueh PR, Teng LJ, Pan HJ, Chen YC, Lu JJ, Wu JJ, Ho SW. Quinupristin-dalfopristin resistance among gram-positive bacteria in Taiwan. Antimicrob Agents Chemother 2000; 44:3374–3380

    Article  PubMed  CAS  Google Scholar 

  38. Felmingham D, Reinert RR, Hirakata Y, Rodloff A. Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother 2002; 55, Suppl. S1:25–37

    Google Scholar 

  39. Zhanel GG, Palatnick L, Nichol KA, Bellyou T, Low DE, Hoban DJ. Antimicrobial resistance in respiratory tract Streptococcus pneumoniae isolates: results of the Canadian Respiratory Organism Susceptibility Study, 1997 to 2002. Antimicrob Agents Chemother 2003; 47:1867–1874

    Article  PubMed  CAS  Google Scholar 

  40. Biedenbach DJ, Stephen JM, Jones RN. Antimicrobial susceptibility profile among beta-haemolytic Streptococcus spp. collected in the SENTRY Antimicrobial Surveillance Program — North America, 2001. Diagn Microbiol Infect Dis 2003; 46:291–294

    Article  PubMed  CAS  Google Scholar 

  41. Hsueh PR, Teng LJ, Lee CM, Huang WK, Wu TL, Wan JH, Yang D, Shyr JM, Chuang YC, Yan JJ, Lu JJ, Wu JJ, Ko WC, Chang FY, Yang YC, Lau YJ, Liu YC, Leu HS, Liu CY, Luh KT. Telithromycin and quinupristin-dalfopristin resistance in clinical isolates of Streptococcus pyogenes: SMART 2001 Data. Antimicrob Agents Chemother 2003; 47:2152–2157

    Article  PubMed  CAS  Google Scholar 

  42. Gordon KA, Beach ML, Biedenbach DJ, Jones RN, Rhomberg PR, Mutnick AH. Antimicrobial susceptibility patterns of beta-hemolytic and viridans group streptococci: report from the SENTRY Antimicrobial Surveillance Program (1997–2000). Diagn Microbiol Infect Dis 2002; 43:157–162

    Article  PubMed  CAS  Google Scholar 

  43. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; sixteenth informational supplement. CLSI Document M100-S16. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, 2006

    Google Scholar 

  44. European Committee on Antimicrobial Susceptibility Testing. Linezolid breakpoints. (EUCAST definitive document E.Def 4.1). Clin Microbiol Infect 2001; 7:283–284

    Article  Google Scholar 

  45. British Society for Antimicrobial Chemotherapy. BSAC methods for antimicrobial susceptibility testing. Version 6.1. February 2007. Accessed March 2007 at http://www.bsac.org.uk/_db/_documents/version_6.1.pdf

  46. Mutnick AH, Enne V, Jones RN. Linezolid resistance since 2001: SENTRY Antimicrobial Surveillance Program. Ann Pharmacother 2003; 37:769–774

    Article  PubMed  CAS  Google Scholar 

  47. Styers D, Sheehan DJ, Hogan P, Sahm DF. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob 2006; 5:2

    Article  PubMed  Google Scholar 

  48. Jones RN, Biedenbach DJ, Anderegg TR. In vitro evaluation of AZD2563, a new oxazolidinone, tested against unusual gram-positive species. Diagn Microbiol Infect Dis 2002; 42:119–122

    Article  PubMed  CAS  Google Scholar 

  49. Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT. In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebac-teria. Antimicrob Agents Chemother 2003; 47:1968–1971

    Article  PubMed  CAS  Google Scholar 

  50. Bryskier A. Bacillus anthracis and antibacterial agents. Clin Microbiol Infect 2002; 8:467–478

    Article  PubMed  CAS  Google Scholar 

  51. Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT. In vitro activities of daptomycin, vancomycin, quinupristin-dalfopristin, linezolid and five other antimicrobials against 307 gram-positive anaerobic and 31 Corynebacterium clinical isolates. Antimicrob Agents Chemother 2003; 47:337–341

    Article  PubMed  CAS  Google Scholar 

  52. Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW, Wallace RJ Jr. In vitro activities of linezolid against multiple Nocardia species. Antimicrob Agents Chemother 2001; 45:1295–1297

    Article  PubMed  CAS  Google Scholar 

  53. Alcala L, Ruiz-Serrano MJ, Perez-Fernandez Turegano C, Garcia De Viedma D, Diaz-Infantes M, Marin-Arriaza M, Bouza E. In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs. Antimicrob Agents Chemother 2003; 47:416–417

    Article  PubMed  CAS  Google Scholar 

  54. Yang SC, Hsueh PR, Lai HC, Teng LJ, Huang LM, Chen JM, Wang SK, Shie DC, Ho SW, Luh KT. High prevalence of antimicrobial resistance in rapidly growing mycobacteria in Taiwan. Antimicrob Agents Chemother 2003; 47:1958–1962

    Article  PubMed  CAS  Google Scholar 

  55. Wallace RJ Jr, Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW. Activities of linezolid against rapidly growing myco-bacteria. Antimicrob Agents Chemother 2001; 45:764–767

    Article  PubMed  CAS  Google Scholar 

  56. Brown-Elliott BA, Crist CJ, Mann LB, Wilson RW, Wallace RJ Jr. In vitro activity of linezolid against slowly growing nontuberculous Mycobacteria. Antimicrob Agents Chemother 2003; 47:1736–1738

    Article  PubMed  CAS  Google Scholar 

  57. Stevens DL, Smith LG, Bruss JB, McConnell-Martin MA, Duvall SE, Todd WM, Hafkin B. Randomized comparison of linezolid (PNU-100766) versus oxacillin-dicloxacilin for treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 2000; 44:3408–3413

    Article  PubMed  CAS  Google Scholar 

  58. Rubinstein E, Cammarata SK, Oliphant TH, Wunderlink RG. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study. Clin Infect Dis 2001; 32:402–412

    Article  PubMed  CAS  Google Scholar 

  59. Stevens DL, Herr D, Lampiris H, Hunt JL, Batts DH, Hafkin B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 2002; 34:1481–1490

    Article  PubMed  CAS  Google Scholar 

  60. Lee JC, Zurenko GE, Shinabarger DL, Cammarata SK. Factors which may influence the development of clinical resistance to linezolid in Enterococcus species. Abstracts of the 39th Annual Meeting of the Infectious Diseases Society of America, San Francisco, CA, 2001, abstract no. 531

    Google Scholar 

  61. Zurenko GE, Todd WM, Hafkin B, Meyers B, Kauffman C, Bock J, Slightom J, Shinabarger D. Development of linezolid-resistant Enterococcus faecium in two compassionate use program patients treated with linezolid. Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 1999; abstract no. 848

    Google Scholar 

  62. Birmingham MC, Rayner CR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis 2003; 36:159–168

    Article  PubMed  CAS  Google Scholar 

  63. Moise PA, Forrest A, Birmingham MC, Schentag JJ. The efficacy and safety of linezolid as treatment for Staphylococcus aureus infections in compassionate use patients who are intolerant of, or who have failed to respond to, vancomycin. J Antimicrob Chemother 2002; 50:1017–1026

    Article  PubMed  CAS  Google Scholar 

  64. Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP. Infections due to vancomycin- resistant Enterococcus faecium resistant to linezolid. Lancet 357:1179

    Article  PubMed  CAS  Google Scholar 

  65. Johnson AP, Tysall L, Stockdale MV, Woodford N, Kaufmann ME, Warner M, Livermore DM, Asboth F, Allerberger FJ. Emerging linezolid-resistant Enterococcus faecalis and Enterococcus fae-cium isolated from two Austrian patients in the same intensive care unit. Eur J Clin Microbiol Infect Dis 2002; 21:751–754

    Article  PubMed  CAS  Google Scholar 

  66. Willems RJ, Top K, Smith DJ, Roper DI, North SE, Woodford N. Mutations in the DNA mismatch repair proteins MutS and MutL of oxazolidinone-resistant or —susceptible Enterococcus faecium. Antimicrob Agents Chemother 2003; 47:3061–3066

    Article  PubMed  CAS  Google Scholar 

  67. Lobritz M, Hutton-Thomas R, Marshall S, Rice LB. Recombination proficiency influences frequency and locus of mutational resistance to linezolid in Enterococcus faecalis. Antimicrob Agents Chemother 2003; 47:3318–3320

    Article  PubMed  CAS  Google Scholar 

  68. Rahim S, Pillai SK, Gold HS, Venkataraman L, Inglima K, Press RA. Linezolid-resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid. Clin Infect Dis 2003; 36:E146–148

    Article  PubMed  Google Scholar 

  69. Jones RN, Della-Latta P, Lee LV, Biedenbach DJ. Linezolid-resistant Enterococcus faecium isolated from a patient without prior exposure to an oxazolidinone: report from the SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis 2002; 42:137–139

    Article  PubMed  Google Scholar 

  70. Marshall SH, Donskey CJ, Hutton-Thomas R, Salata RA, Rice LB. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 2002; 46:3334–3336

    Article  PubMed  CAS  Google Scholar 

  71. Ruggero K, Schroeder LK, Schreckenberger PC, Mankin AS, Quinn JP. Nosocomial superinfections due to linezolid-resistant Enterococcus faecalis: evidence for gene dosage effect on linezolid MICs. Diagn Microbiol Infect Dis 2003; 47:511–513

    Article  PubMed  CAS  Google Scholar 

  72. Herrero IA, Issa NC, Patel R. Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium. N Engl J Med 2002; 346:867–869

    Article  PubMed  Google Scholar 

  73. Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, Moellering RC Jr, Ferraro MJ. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 2001; 358:207–208

    Article  PubMed  CAS  Google Scholar 

  74. Pillai SK, Sakoulas G, Wennersten C, Eliopoulos GM, Moellering RC Jr, Ferraro MJ, Gold HS. Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis 2002; 186:1603–1607

    Article  PubMed  CAS  Google Scholar 

  75. Wilson P, Andrews JA, Charlesworth R, Walesby R, Singer M, Farrell DJ, Robbins M. Linezolid resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 2003; 51:186–188

    Article  PubMed  CAS  Google Scholar 

  76. Meka V, Pillai SK, Sakoulas G, Wennersten C, Venkataraman L, DeGirolami PC, Eliopoulos GM, Moellering RC Jr, Gold HS. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 2004; 190:311–317

    Article  PubMed  CAS  Google Scholar 

  77. Paterson DL, Potoski BA, Kolano J, Marsh J, Pasculle AW, McCurry K. Fatal infection due to Staphylococcus aureus with decreased linezolid susceptibility. Abstracts of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, 2003; abstract no. K-1405

    Google Scholar 

  78. Potoski BA, Mangino JE, Goff DA. Clinical failures of linezolid and implications for the clinical microbiology laboratory. Emerg Infect Dis 2002; 8:1519–1520

    PubMed  Google Scholar 

  79. Pai MP, Rodvold KA, Schreckenberger PC, Gonzales RD, Petrolatti JM, Quinn JP. Risk factors associated with the development of infection with linezolid- and vancomycin-resistant Enterococcus faecium. Clin Infect Dis 2002; 35:1269–1272

    Article  PubMed  Google Scholar 

  80. Mazur W, Knob C, Fraimow HS. Quantification of 23S rRNA mutations and relative fitness of clinical isolates of linezolid-resistant Enterococcus faecalis. Abstracts of the 42nd Inter-science Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA, 2002; abstract no. C1–1607

    Google Scholar 

  81. Dobbs TE, Patel M, Waites K, et al. Nosocomial spread of Enterococcus faecium resistant to vancomycin and linezolid in a tertiary care medical center. J Clin Microbiol 2006; 44:3368–3370

    Article  PubMed  CAS  Google Scholar 

  82. Potoski BA, Adams J, Clarke L, et al. Epidemiology profile of linezolid-resistant coagulase-negative staphylococci. Clin Infect Dis 2006; 43:165–171

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shinabarger, D., Eliopoulos, G.M. (2009). Resistance to Linezolid. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics