Skip to main content

Implicit Membrane Models for Membrane Protein Simulation

  • Protocol
Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

Implicit models of membrane environments offer computational advantages in simulations of membrane-interacting proteins and peptides. Such methods are especially useful for studies of long time scale processes, such as folding and aggregation, or very large complexes that are otherwise intractable with explicit lipid environments. Implicit models replace explicit solute—solvent interactions with a mean-field approach. In the most physical models, continuum dielectric electrostatics is combined with empirical formulations for the nonpolar components of the free energy of solvation. The practical use of a number of implicit membrane models ranging from the empirical IMM1 method to generalized Born-based methods with two-dielectric and multidielectric representations of biological membrane characteristics is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Lin, J.-H., Baker, N. A. and McCammon, J. A. (2002). Bridging implicit and explicit solvent approaches for membrane electrostatics. Biophysical Journal 83, 1374–1379.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Lazaridis, T. (2003). Effective energy function for proteins in lipid membranes. Proteins 52, 176–192.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Lomize, A. L., Pogozheva, I. D., Lomize, M. A. and Mosberg, H. I. (2006). Positioning of proteins in membranes: A computational approach. Protein Science 15, 1318–1333.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Ducarme, P., Rahman, M. and Brasseur, R. (1998). IMPALA: A simple restraint field to simulate the biological membrane in molecular structure studies. Proteins-Structure Function and Bioinformatics 30, 357–371.

    Article  CAS  Google Scholar 

  5. 5. Jahnig, F. and Edholm, O. (1992). Modeling of the structure of bacteriorhodopsin—a molecular-dynamics study. Journal of Molecular Biology 226, 837–850.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Sanders, C. R. and Schwonek, J. P. (1993). An approximate model and empirical energy function for solute interactions with a water-phosphatidylcholine interface. Biophysical Journal 65, 1207–1218.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Nolde, D. E., Arseniev, A. S., Vergoten, G. and Efremov, R. G. (1997). Atomic solvation parameters for proteins in a membrane environment. Application to transmembrane alpha-helices. J Biomol Struct Dyn 15, 1–18.

    CAS  PubMed  Google Scholar 

  8. 8. Efremov, R. G., Nolde, D. E., Vergoten, G. and Arseniev, A. S. (1999). A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation. Biophysical Journal 76, 2448–2459.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Efremov, R. G., Nolde, D. E., Vergoten, G. and Arseniev, A. S. (1999). A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices. Biophysical Journal 76, 2460–2471.

    Article  CAS  PubMed  Google Scholar 

  10. 10. BenTal, N., BenShaul, A., Nicholls, A. and Honig, B. (1996). Free-energy determinants of alpha-helix insertion into lipid bilayers. Biophysical Journal 70, 1803–1812.

    Article  CAS  Google Scholar 

  11. 11. Kessel, A., Cafiso, D. S. and Ben-Tal, N. (2000). Continuum solvent model calculations of alamethicin-membrane interactions: Thermodynamic aspects. Biophysical Journal 78, 571–583.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Murray, D., BenTal, N., Honig, B. and McLaughlin, S. (1997). Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure 5, 985–989.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Roux, B. and MacKinnon, R. (1999). The cavity and pore helices the KcsA K+ channel: Electrostatic stabilization of monovalent cations. Science 285, 100–102.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Roux, B., Berneche, S. and Im, W. (2000). Ion channels, permeation, and electrostatics: Insight into the function of KcsA. Biochemistry 39, 13295–13306.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Im, W. and Roux, B. (2002). Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory. Journal of Molecular Biology 322, 851–869.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Grossfield, A., Sachs, J. and Woolf, T. B. (2000). Dipole lattice membrane model for protein calculations. Proteins-Structure Function and Genetics 41, 211–223.

    Article  CAS  Google Scholar 

  17. 17. Sharp, K. A. and Honig, B. (1990). Electrostatic interactions in macromolecules—theory and applications. Annual Review of Biophysics and Biophysical Chemistry 19, 301–332.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Warwicker, J. and Watson, H. C. (1982). Calculation of the electric potential in the active site cleft due to α-helix dipoles. Journal of Molecular Biology 157, 671–679.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Gilson, M. K., Sharp, K. A. and Honig, B. H. (1987). Calculating the electrostatic potential of molecules in solution: method and error assessment. Journal of Computational Chemistry 9, 327–335.

    Article  Google Scholar 

  20. 20. Holst, M., Baker, N. and Wang, F. (2000). Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples. Journal of Computational Chemistry 21, 1319–1342.

    Article  CAS  Google Scholar 

  21. 21. Baker, N., Holst, M. and Wang, F. (2000). Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems. Journal of Computational Chemistry 21, 1343–1352.

    Article  CAS  Google Scholar 

  22. 22. Baker, N. A. (2005). Improving implicit solvent simulations: a Poisson-centric view. Current Opinion in Structural Biology 15, 137–143.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Luo, R., David, L. and Gilson, M. K. (2002). Accelerated Poisson-Boltzmann calculations for static and dynamic systems. Journal of Computational Chemistry 23, 1244–1253.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Lu, B. Z., Chen, W. Z., Wang, C. X. and Xu, X.-j. (2002). Protein molecular dynamics with electrostatic force entirely determined by a single Poisson-Boltzmann calculation. Proteins 48, 497–504.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Feig, M., Onufriev, A., Lee, M. S., Im, W., Case, D. A. and Brooks III, C. L. (2004). Performance comparison of generalized Born and Poisson Methods in the calculation of electrostatic solvation energies for protein structures. Journal of Computational Chemistry 25, 265–284.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Prabhu, N. V., Zhu, P. J. and Sharp, K. A. (2004). Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method. Journal of Computational Chemistry 25, 2049–2064.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Im, W., Beglov, D. and Roux, B. (1998). Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Computer Physics Communications 111, 59–75.

    Article  CAS  Google Scholar 

  28. 28. Friedrichs, M., Zhou, R. H., Edinger, S. R. and Friesner, R. A. (1999). Poisson-Boltzmann analytical gradients for molecular modeling calculations. Journal of Physical Chemistry B 103, 3057–3061.

    Article  CAS  Google Scholar 

  29. 29. Still, W. C., Tempczyk, A., Hawley, R. C. and Hendrickson, T. (1990). Semianalytical Treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society 112, 6127–6129.

    Article  CAS  Google Scholar 

  30. 30. Qiu, D., Shenkin, P. S., Hollinger, F. P. and Still, W. C. (1997). The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J Phys Chem A 101, 3005–3014.

    Article  CAS  Google Scholar 

  31. 31. Lee, M. S., Salsbury, F. R., Jr. and Brooks, C. L., III. (2002). Novel generalized Born methods. Journal of Chemical Physics 116, 10606–10614.

    Article  CAS  Google Scholar 

  32. 32. Lee, M. S., Feig, M., Salsbury, F. R., Jr. and Brooks, C. L., III. (2003). New analytical approximation to the standard molecular volume definition and its application to generalized Born calculations. Journal of Computational Chemistry 24, 1348–1356.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Onufriev, A., Bashford, D. and Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins-Structure Function and Bioinformatics 55, 383–394.

    Article  CAS  Google Scholar 

  34. 34. Grycuk, T. (2003). Deficiency of the Coulomb-field approximation in the generalized Born model: An improved formula for Born radii evaluation. Journal of Chemical Physics 119, 4817–4826.

    Article  CAS  Google Scholar 

  35. 35. Calimet, N., Schaefer, M. and Simonson, T. (2001). Protein molecular dynamics with the generalized Born/ACE solvent model. Proteins 45, 144–158.

    Article  CAS  PubMed  Google Scholar 

  36. 36. Tsui, V. and Case, D. A. (2000). Molecular dynamics simulations of nucleic acids with a generalized Born solvation model. Journal of the American Chemical Society 122, 2489–2498.

    Article  CAS  Google Scholar 

  37. 37. Fan, H., Mark, A. E., Zhu, J. and Honig, B. (2005). Comparative study of generalized Born models: Protein dynamics. Proceedings of the National Academy of Sciences of the United States of America 102, 6760–6764.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Geney, R., Layten, M., Gomperts, R., Hornak, V. and Simmerling, C. (2006). Investigation of salt bridge stability in a generalized born solvent model. Journal of Chemical Theory and Computation 2, 115–127.

    Article  CAS  Google Scholar 

  39. 39. Chocholousova, J. and Feig, M. (2006). Implicit solvent simulations of DNA and DNA-protein complexes: Agreement with explicit solvent vs experiment. Journal of Physical Chemistry B 110, 17240–17251.

    Article  CAS  Google Scholar 

  40. 40. Tanizaki, S. and Feig, M. (2006). Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model. Journal of Physical Chemistry B 110, 548–556.

    Article  CAS  Google Scholar 

  41. 41. Stern, H. A. and Feller, S. E. (2003). Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation. Journal of Chemical Physics 118, 3401–3412.

    Article  CAS  Google Scholar 

  42. 42. Zhou, F. and Schulten, K. (1995). Molecular dynamics study of a membrane-water interface. Journal of Physical Chemistry 99, 2194–2207.

    Article  CAS  Google Scholar 

  43. 43. Im, W., Feig, M. and Brooks III, C. L. (2003). An implicit membrane generalized Born theory for the study of structure, stability, and interactions of membrane proteins. Biophysical Journal 85, 2900–2918.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Spassov, V. Z., Yan, L. and Szalma, S. (2002). Introducing an implicit membrane in generalized Born/solvent accessibility continuum solvent models. Journal of Physical Chemistry B 106, 8726–8738.

    Article  CAS  Google Scholar 

  45. 45. Im, W. and Brooks, C. L. (2004). De novo folding of membrane proteins: An exploration of the structure and NMR properties of the fd coat protein. Journal of Molecular Biology 337, 513–519.

    Article  CAS  PubMed  Google Scholar 

  46. 46. Im, W. and Brooks, C. L. (2005). Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America 102, 6771–6776.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Tanizaki, S. and Feig, M. (2005). A generalized Born formalism for heterogeneous dielectric environments: Application to the implicit modeling of biological membranes. Journal of Chemical Physics 122, 124706.

    Article  PubMed  Google Scholar 

  48. 48. Feig, M., Im, W. and Brooks III, C. L. (2004). Implicit solvation based on generalized Born theory in different dielectric environments. Journal of Chemical Physics 120, 903–911.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Mclaughlin, S. (1989). The Electrostatic Properties of Membranes. Annual Review of Biophysics and Biophysical Chemistry 18, 113–136.

    Article  CAS  PubMed  Google Scholar 

  50. 50. Lazaridis, T. (2005). Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins-Structure Function and Bioinformatics 58, 518–527.

    Article  CAS  Google Scholar 

  51. 51. Gullingsrud, J. and Schulten, K. (2003). Gating of MscL studied by steered molecular dynamics. Biophysical Journal 85, 2087–2099.

    Article  CAS  PubMed  Google Scholar 

  52. 52. Marrink, S. J. and Berendsen, H. J. C. (1996). Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. Journal of Physical Chemistry 100, 16729–16738.

    Article  CAS  Google Scholar 

  53. 53. Marrink, S.-J. and Berendsen, H. J. C. (1994). Simulation of water transport through a lipid membrane. Journal of Physical Chemistry 98, 4155–4168.

    Article  CAS  Google Scholar 

  54. 54. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 4, 187–217.

    Article  CAS  Google Scholar 

  55. 55. Lazaridis, T. and Karplus, M. (2000). Effective energy functions for protein structure prediction. Current Opinion in Structural Biology 10, 139–145.

    Article  CAS  PubMed  Google Scholar 

  56. 56. Neria, E., Fischer, S. and Karplus, M. (1996). Simulation of activation free energies in molecular systems. Journal of Chemical Physics 105, 1902–1921.

    Article  CAS  Google Scholar 

  57. 57. Dominy, B. N. and Brooks III, C. L. (1999). Development of a generalized Born model parametrization for proteins and nucleic acids. Journal of Physical Chemistry B 103, 3765–3773.

    Article  CAS  Google Scholar 

  58. 58. Im, W., Lee, M. S. and Brooks, C. L., III. (2003). Generalized Born model with a simple smoothing function. Journal of Computational Chemistry 24, 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Chocholousova, J. and Feig, M. (2006). Balancing an accurate representation of the molecular surface in generalized Born formalisms with integrator stability in molecular dynamics simulations. Journal of Computational Chemistry 27, 719–729.

    Article  CAS  PubMed  Google Scholar 

  60. 60. MacKerell, A. D., Jr., Bashford, D., Bellott, M., Dunbrack, J. D., Evanseck, M. J., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. and Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 102, 3586–3616.

    Article  CAS  Google Scholar 

  61. 61. Brooks, C. L., Berkowitz, M. and Adelman, S. A. (1980). Generalized Langevin theory for many-body problems in chemical-dynamics—Gas-surface collisions, vibrational-energy relaxation in solids, and recombination reactions in liquids. Journal of Chemical Physics 73, 4353–4364.

    Article  CAS  Google Scholar 

  62. 62. Zagrovic, B. and Pande, V. (2003). Solvent viscosity dependence of the folding rate of a small protein: distributed computing study. Journal of Computational Chemistry 24, 1432–1436.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Nina, M., Beglov, D. and Roux, B. (1997). Atomic radii for continuum electrostatics calculations based on molecular dynamics free energy simulations. Journal of Physical Chemistry 101, 5239–5248.

    CAS  Google Scholar 

  64. 64. Kucerka, N., Tristram-Nagle, S. and Nagle, J. F. (2006). Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. Journal of Membrane Biology 208, 193–202.

    Article  Google Scholar 

  65. 65. Kucerka, N., Tristram-Nagle, S. and Nagle, J. F. (2006). Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophysical Journal 90, L83–L85.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Feig, M. (2008). Implicit Membrane Models for Membrane Protein Simulation. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics