Skip to main content

Real-Time PCR Analysis of HIV-1 Replication Post-entry Events

  • Protocol
HIV Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 485))

Abstract

The reverse transcriptase enzyme plays an essential role in the HIV-1 life cycle by converting a single-stranded viral RNA genome into a double-stranded viral DNA through a complex process known as reverse transcription. The resulting double-stranded DNA is integrated into the host chromosome to form a provirus. A small proportion of the viral DNAs form dead-end circular products, which nevertheless can serve as useful surrogate markers for monitoring viral replication. Utilizing real-time PCR technology, it is possible to track and quantify different stages of the reverse transcription process, the proviruses, and the nonintegrated dead-end reverse transcription products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heid, C. A., Stevens, J., Livak, K. J., et al. (1996) Real time quantitative PCR. Genome Res 6, 986–994.

    Article  CAS  PubMed  Google Scholar 

  2. Lie, Y. S., Petropoulos, C. J. (1998) Advances in quantitative PCR technology: 5′ nuclease assays. Curr Opin Biotechnol 9, 43–48.

    Article  CAS  PubMed  Google Scholar 

  3. Holland, P. M., Abramson, R. D., Watson, R., et al. (1991) Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88, 7276–7280.

    Article  CAS  PubMed  Google Scholar 

  4. Livak, K. J., Flood, S. J., Marmaro, J., et al. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4, 357–362.

    CAS  PubMed  Google Scholar 

  5. Palmer, S., Wiegand, A. P., Maldarelli, F., et al. (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41,4531–4536.

    Article  CAS  PubMed  Google Scholar 

  6. Gibellini, D., Vitone, F., Schiavone, P., et al. (2004) Quantitative detection of human immunodeficiency virus type 1 (HIV-1) proviral DNA in peripheral blood mononuclear cells by SYBR green real-time PCR technique. J Clin Virol 29, 282–289.

    Article  CAS  PubMed  Google Scholar 

  7. Gibellini, D., Vitone, F., Gori, E., et al. (2004) Quantitative detection of human immunodeficiency virus type 1 (HIV-1) viral load by SYBR green real-time RT-PCR technique in HIV-1 seropositive patients. J Virol Methods 115, 183–189.

    Article  CAS  PubMed  Google Scholar 

  8. Morrison, T. B., Weis, J. J., Wittwer, C. T. (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954–958, 960, 962.

    CAS  PubMed  Google Scholar 

  9. Coffin, J. M., Hughes, S. H., Varmus, H. (1997) Retroviruses, Cold Spring Harbor Laboratory Press, Plainview, N.Y.

    Google Scholar 

  10. Voronin, Y. A., Pathak, V. K. (2004) Frequent dual initiation in human immunodeficiency virus-based vectors containing two primer-binding sites: a quantitative in vivo assay for function of initiation complexes. J Virol 78, 5402–5413.

    Article  CAS  PubMed  Google Scholar 

  11. Butler, S. L., Hansen, M. S., Bushman, F. D. (2001) A quantitative assay for HIV DNA integration in vivo. Nat Med 7, 631–634.

    Article  CAS  PubMed  Google Scholar 

  12. Karageorgos, L., Li, P., Burrell, C. J. (1995) Stepwise analysis of reverse transcription in a cell-to-cell human immunodeficiency virus infection model: kinetics and implications. J Gen Virol 76 (Pt 7), 1675–1686.

    Article  CAS  PubMed  Google Scholar 

  13. Huber, H. E., McCoy, J. M., Seehra, J. S., et al. (1989) Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching. J Biol Chem 264,4669–4678.

    CAS  PubMed  Google Scholar 

  14. Majumdar, C., Abbotts, J., Broder, S., et al. (1988) Studies on the mechanism of human immunodeficiency virus reverse transcriptase. Steady-state kinetics, processivity, and polynucleotide inhibition. J Biol Chem 263, 15657–15665.

    CAS  PubMed  Google Scholar 

  15. Victoria, J. G., Lee, D. J., McDougall, B. R., et al. (2003) Replication kinetics for divergent type 1 human immunodeficiency viruses using quantitative SYBR green I real-time polymerase chain reaction. AIDS Res Hum Retroviruses 19, 865–874.

    Article  CAS  PubMed  Google Scholar 

  16. Munk, C., Brandt, S. M., Lucero, G., et al. (2002) A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci USA 99, 13843–13848.

    Article  CAS  PubMed  Google Scholar 

  17. Reardon, J. E. (1993) Human immunodeficiency virus reverse transcriptase. A kinetic analysis of RNA-dependent and DNA-dependent DNA polymerization. J Biol Chem 268, 8743–8751.

    CAS  PubMed  Google Scholar 

  18. Buckman, J. S., Bosche, W. J., Gorelick, R. J. (2003) Human immunodeficiency virus type 1 nucleocapsid zn(2+) fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA. J Virol 77,1469–1480.

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, J. A., Gagliardi, T. D., Alvord, W. G., et al. (2006) Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration. Virology 353, 41–51.

    Article  CAS  PubMed  Google Scholar 

  20. Brussel, A., Sonigo, P. (2003) Analysis of early human immunodeficiency virus type 1 DNA synthesis by use of a new sensitive assay for quantifying integrated provirus. J Virol 77, 10119–10124.

    Article  CAS  PubMed  Google Scholar 

  21. O’Doherty, U., Swiggard, W. J., Jeyakumar, D., et al. (2002) A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. J Virol 76, 10942–10950.

    Article  PubMed  Google Scholar 

  22. Svarovskaia, E. S., Barr, R., Zhang, X., et al. (2004) Azido-containing diketo acid derivatives inhibit human immunodeficiency virus type 1 integrase in vivo and influence the frequency of deletions at two-long-terminal-repeat-circle junctions. J Virol 78, 3210–3222.

    Article  CAS  PubMed  Google Scholar 

  23. Lusi, E. A., Guarascio, P., Presutti, C., et al. (2005) One-step nested PCR for detection of 2 LTR circles in PBMCs of HIV-1 infected patients with no detectable plasma HIV RNA. J Virol Meth 125, 11–13.

    Article  CAS  Google Scholar 

  24. Gillim-Ross, L., Cara, A., Klotman, M. E. (2005) HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages. Viral Immunol 18, 190–196.

    Article  CAS  PubMed  Google Scholar 

  25. Jacque, J. M., Stevenson, M. (2006) The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature 441, 641–645.

    Article  CAS  PubMed  Google Scholar 

  26. Lewin, S. R., Vesanen, M., Kostrikis, L., et al. (1999) Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J Virol 73, 6099–6103.

    CAS  PubMed  Google Scholar 

  27. Halvas, E. K., Aldrovandi, G. M., Balfe, P., et al. (2006) Blinded, multicenter comparison of methods to detect a drug-resistant mutant of human immunodeficiency virus type 1 at low frequency. J Clin Microbiol 44,2612–2614.

    Article  CAS  PubMed  Google Scholar 

  28. Mulder, J., McKinney, N., Christopherson, C., et al. (1994) Rapid and simple PCR assay for quantitation of human immunodeficiency virus type 1 RNA in plasma: application to acute retroviral infection. J Clin Microbiol 32, 292–300.

    CAS  PubMed  Google Scholar 

  29. Piatak, M., Jr., Luk, K. C., Williams, B., et al. (1993) Quantitative competitive polymerase chain reaction for accurate quantitation of HIV DNA and RNA species. Biotechniques 14, 70–81.

    PubMed  Google Scholar 

  30. Piatak, M., Jr., Saag, M. S., Yang, L. C., et al. (1993) High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754.

    Article  CAS  PubMed  Google Scholar 

  31. Unutmaz, D., KewalRamani, V. N., Marmon, S., et al. (1999) Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189, 1735–1746.

    Article  CAS  PubMed  Google Scholar 

  32. Yee, J. K., Miyanohara, A., LaPorte, P., et al. (1994) A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 91, 9564–9568.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mbisa, J.L., Delviks-Frankenberry, K.A., Thomas, J.A., Gorelick, R.J., Pathak, V.K. (2009). Real-Time PCR Analysis of HIV-1 Replication Post-entry Events. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols. Methods In Molecular Biology™, vol 485. Humana Press. https://doi.org/10.1007/978-1-59745-170-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-170-3_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-859-1

  • Online ISBN: 978-1-59745-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics