Skip to main content

Reverse Two-Hybrid Screening to Analyze Protein–Protein Interaction of HIV-1 Viral and Cellular Proteins

  • Protocol
HIV Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 485))

Abstract

HIV-1 replication involves a complex network of multiple protein–protein interactions. HIV-1 viral proteins exhibit both homomeric interactions among themselves and heteromeric interactions with other viral or cellular proteins. Identification and characterization of these protein–protein interactions have provided a wealth of information about the biology of the virus. Precise information about the residues involved in interaction is valuable in understanding the functional significance of these interactions, and can be determined relatively easily for proteins whose three-dimensional structure is known. However, the lack of three-dimensional structural information for several host proteins makes it harder to carry out detailed biochemical and functional studies. Reverse-two-hybrid system, a variation of the yeast-two-hybrid system can be used to genetically isolate mutants of a protein that are defective for specific protein–protein interactions. The strategy is to create a library of random mutations in one of the interacting partners and from among this library, screen for those that are defective for interaction using yeast two-hybrid system. In this review, we will describe a method to efficiently generate a library of random mutations and to further screen this library using the simple color scheme of using LacZ as a reporter gene. Once the mutants are isolated, they are tested in other biochemical systems and can be subjected to further functional and virological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hehl, E. A., Joshi, P., Kalpana, G. V., et al. (2004) Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J Virol 78, 5056–67.

    Google Scholar 

  2. Wu, X., Liu, H., Xiao, H., et al. (1999) Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. J Virol 73, 2126–35.

    CAS  PubMed  Google Scholar 

  3. Zhu, K., Dobard, C., Chow, S. A. (2004) Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. J Virol 78, 5045–55.

    Article  CAS  PubMed  Google Scholar 

  4. Cherepanov, P., Maertens, G., Proost, P., et al. (2003)HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278, 372–81.

    Article  CAS  PubMed  Google Scholar 

  5. Kalpana, G. V., Marmon, S., Wang, W., et al. (1994)Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266, 2002–6.

    Article  CAS  PubMed  Google Scholar 

  6. Goff, S. P. (2001) Intracellular trafficking of retroviral genomes during the early phase of infection: viral exploitation of cellular pathways. J Gene Med 3, 517–28.

    Article  CAS  PubMed  Google Scholar 

  7. Luban, J., Bossolt, K. L., Franke, E. K., et al. (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–78.

    Article  CAS  PubMed  Google Scholar 

  8. Berger, E. A., Murphy, P. M., Farber, J. M. (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease Annu Rev Immunol 17, 657–700.

    Article  CAS  PubMed  Google Scholar 

  9. Goff, S. P. (2004) Genetic control of retrovirus susceptibility in mammalian cells. Annu Rev Genet 38, 61–85.

    Article  CAS  PubMed  Google Scholar 

  10. Sorin, M., Kalpana, G. V. (2006) Dynamics of virus-host interplay in HIV-1 replication. Curr HIV Res 4, 117–30.

    Article  CAS  PubMed  Google Scholar 

  11. Nermut, M. V., Fassati, A. (2003) Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes. J Virol 77, 8196–206.

    Article  CAS  PubMed  Google Scholar 

  12. Bukrinsky, M. (2004) A hard way to the nucleus. Mol Med 10, 1–5.

    CAS  PubMed  Google Scholar 

  13. Iordanskiy, S., Berro, R., Altieri, M., et al. (2006) Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3, 4.

    Article  PubMed  Google Scholar 

  14. Turelli, P., Doucas, V., Craig, E., et al. (2001) Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol Cell 7, 1245–54.

    Article  CAS  PubMed  Google Scholar 

  15. Vandegraaff, N., Devroe, E., Turlure, F., et al. (2006) Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology 346, 415–26.}

    Article  CAS  PubMed  Google Scholar 

  16. Ciuffi, A., Bushman, F. D. (2006) Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet 22, 388–95.

    Article  CAS  PubMed  Google Scholar 

  17. Garber, M. E., Wei, P., Jones, K. A. (1998) HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb Symp Quant Biol 63, 371–80.

    Article  CAS  PubMed  Google Scholar 

  18. Wei, P., Garber, M. E., Fang, S. M., et al. (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451–62.

    Article  CAS  PubMed  Google Scholar 

  19. Ariumi, Y., Serhan, F., Turelli, P., et al. (2006) The integrase interactor 1 (INI1) proteins facilitate Tat-mediated human immunodeficiency virus type 1 transcription. Retrovirology 3, 47.

    Article  PubMed  Google Scholar 

  20. Kamine, J., Chinnadurai, G. (1992) Synergistic activation of the human immunodeficiency virus type 1 promoter by the viral Tat protein and cellular transcription factor Sp1. J Virol 66, 3932–6.

    CAS  PubMed  Google Scholar 

  21. Mahmoudi, T., Parra, M., Vries, R. G., et al. (2006) The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 281, 19960–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nekhai, S., Jeang, K. T. (2006) Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev. Future Microbiol 1, 417–26.

    Article  CAS  PubMed  Google Scholar 

  23. Pollard, V. W., Malim, M. H. (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52, 491–532.

    Article  CAS  PubMed  Google Scholar 

  24. Garrus, J. E., von Schwedler, U. K., Pornillos, O. W., et al. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmerman, C., Klein, K. C., Kiser, P. K., et al. (2002) Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415, 88–92.

    Article  CAS  PubMed  Google Scholar 

  26. Fujii, K., Hurley, J. H., Freed, E. O. (2007) Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1. Nat Rev Microbiol 5, 912–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chien, C. T., Bartel, P. L., Sternglanz, R., et al. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A 88, 9578–82.

    Article  CAS  PubMed  Google Scholar 

  28. Chong, J. A., Mandel, G. (1997) in (Bartel, P. L., and Fields, S., Eds.), The Yeast Two-Hybrid System, pp. 289–97, Oxford University Press, New York, NY.

    Google Scholar 

  29. Licitra, E. J., Liu, J. O. (1996) A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci U S A 93, 12817–21.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, B., Kraemer, B., Sengupta, D., et al. (1997) in “The Yeast Two-Hybrid System” (Bartel, P. L., and Fields, S., Eds.), pp.298–315, Oxford University Press, New York, NY.

    Google Scholar 

  31. Osborne, M. A., Dalton, S., Kochan, J. P. (1995) The yeast tribrid system–genetic detection of trans-phosphorylated ITAM-SH2-interactions. Biotechnology (N Y) 13, 1474–8.

    Article  CAS  Google Scholar 

  32. Tirode, F., Malaguti, C., Romero, F., et al. (1997) A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system. J Biol Chem 272, 22995–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, H., Peters, G. A., Zeng, X., et al. (1995) Yeast two-hybrid system demonstrates that estrogen receptor dimerization is ligand-dependent in vivo. J Biol Chem 270, 23322–9.

    Article  CAS  PubMed  Google Scholar 

  34. Vidal, M., Brachmann, R. K., Fattaey, A., et al. (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A 93, 10315–20.

    Article  CAS  PubMed  Google Scholar 

  35. Yamada, K., Senju, S., Shinohara, T., et al. (2001) Humoral immune response directed against LEDGF in patients with VKH. Immunol Lett 78, 161–8.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng, S. W., Kalpana, G. V. Unpublished observations.

    Google Scholar 

  37. Cheng, S. W., Davies, K. P., Yung, E., et al. (1999) c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat. Genet. 22, 102–5.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, D., Sohn, H., Kalpana, G. V., et al. (1999) Interaction of E1 and hSNF5 proteins stimulates replication of human papillomavirus DNA. Nature 399, 487–91.

    Article  CAS  PubMed  Google Scholar 

  39. Morozov A, Y. E., Kalpana GV (1998) Structure-function analysis of integrase interactor 1/hSNF5L1 reveals differential properties of two repeat motifs present in the highly conserved region. Proc Natl Acad Sci U S A 95, 1120–5.

    Google Scholar 

  40. Yung, E., Sorin, M., Pal, A., et al. (2001) Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nat Med 7, 920–6.

    Article  CAS  PubMed  Google Scholar 

  41. Kalpana, G. V., Reicin, A., Cheng, G. S., et al. (1999) Isolation and characterization of an oligomerization-negative mutant of HIV-1 integrase. Virology 259, 274–85.

    Article  CAS  PubMed  Google Scholar 

  42. Fields, S. (2005) High-throughput two-hybrid analysis. The promise and the peril. Febs J 272, 5391–9.

    Article  CAS  PubMed  Google Scholar 

  43. Bouhamdan, M., Benichou, S., Rey, F., et al. (1996) Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme J Virol 70, 697–704.

    CAS  PubMed  Google Scholar 

  44. Engebrecht, J., Brent, R., Kaderbhai, M. A. (1991) in (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Current Protocols in Molecular Biology, John Wiley and Sons.

    Google Scholar 

  45. Scopes, R. K., Smith, J. A. (2006) in (Ausbel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds.), Current Protocols in Molecular Biology, pp. 10.0.1, John Wiley and Sons, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Das, S., Kalpana, G.V. (2009). Reverse Two-Hybrid Screening to Analyze Protein–Protein Interaction of HIV-1 Viral and Cellular Proteins. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols. Methods In Molecular Biology™, vol 485. Humana Press. https://doi.org/10.1007/978-1-59745-170-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-170-3_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-859-1

  • Online ISBN: 978-1-59745-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics