Skip to main content

Isolation and Analysis of HIV-1 Preintegration Complexes

  • Protocol
HIV Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 485))

Abstract

A discerning feature of the retrovirus lifecycle is the covalent integration of the viral reverse transcript into a chromosome within the infected cell. Integration is required for productive infection and therefore defines the viral integrase protein of human immunodeficiency virus type 1 (HIV-1) as a bona fide target for the development of antiviral drugs in the fight against HIV/AIDS. Integrase works in the context of the viral preintegration complex (PIC), a high molecular weight nucleoprotein complex that supports the integration of its endogenous viral DNA copy made during reverse transcription into an exogenous target DNA in the test tube. PIC analyses are central to understanding the molecular mechanisms of HIV-1 integration as well as investigating the pharmacological properties of integrase inhibitors. This chapter describes techniques for isolating HIV-1 PICs from cells as well as quantifying their level of integration activity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katzman, M. and Katz, R. A. (1999) Substrate recognition by retroviral integrases. Adv Virus Res 52, 371–395.

    Article  CAS  PubMed  Google Scholar 

  2. Pauza, C. (1990) Two bases are deleted from the termini of HIV-1 linear DNA during integrative recombination. Virology 179, 886–889.

    Article  CAS  PubMed  Google Scholar 

  3. Miller, M., Farnet, C., Bushman, F. (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71, 5382–5390.

    CAS  PubMed  Google Scholar 

  4. Fujiwara, T., Mizuuchi, K. (1988) Retroviral DNA integration: structure of an integration intermediate. Cell 54, 497–504.

    Article  CAS  PubMed  Google Scholar 

  5. Brown, P. O., Bowerman, B., Varmus, H. E., et al. (1989) Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci USA 86, 2525–2529.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, Y. M., Coffin, J. M. (1991) Relationship of avian retrovirus DNA synthesis to integration in vitro. Mol Cell Biol 11, 1419–1430.

    CAS  PubMed  Google Scholar 

  7. Yoder, K. E., Bushman, F. D. (2000) Repair of gaps in retroviral DNA integration intermediates. J Virol 74, 11191–11200.

    Article  CAS  PubMed  Google Scholar 

  8. Turlure, F., Devroe, E., Silver, P. A., et al. (2004) Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9, 3187–3208.

    Article  CAS  PubMed  Google Scholar 

  9. Brown, P. O., Bowerman, B., Varmus, H. E., et al. (1987) Correct integration of retroviral DNA in vitro. Cell 49, 347–356.

    Article  CAS  PubMed  Google Scholar 

  10. Ellison, V., Abrams, H., Roe, T., Lifson, J., et al. (1990) Human immunodeficiency virus integration in a cell-free system. J Virol 64, 2711–2715.

    CAS  PubMed  Google Scholar 

  11. Farnet, C. M., Haseltine, W. A. (1990) Integration of human immunodeficiency virus type 1 DNA in vitro. Proc Natl Acad Sci USA 87, 4164–4168.

    Article  CAS  PubMed  Google Scholar 

  12. Hansen, M. S., Smith, G. J., Kafri, T., et al. (1999) Integration complexes derived from HIV vectors for rapid assays in vitro. Nat Biotechnol 17, 578–582.

    Article  CAS  PubMed  Google Scholar 

  13. Brooun, A., Richman, D. D., Kornbluth, R. S. (2001) HIV-1 preintegration complexes preferentially integrate into longer target DNA molecules in solution as detected by a sensitive, polymerase chain reaction-based integration assay. J Biol Chem 276, 46946–46952.

    Article  CAS  PubMed  Google Scholar 

  14. Lu, R., Vandegraaff, N., Cherepanov, P., et al. (2005) Lys-34, dispensable for integrase catalysis, is required for preintegration complex function and human immunodeficiency virus type 1 replication. J Virol 79, 12584–12591.

    Article  CAS  PubMed  Google Scholar 

  15. Dismuke, D. J., Aiken, C. (2006) Evidence for a functional link between uncoating of the human immunodeficiency virus type 1 core and nuclear import of the viral preintegration complex. J Virol 80, 3712–3720.

    Article  CAS  PubMed  Google Scholar 

  16. Oh, J., Chang, K. W., Hughes, S. H. (2006) Mutations in the U5 sequences adjacent to the primer binding site do not affect tRNA cleavage by Rous sarcoma virus RNase H but do cause aberrant integrations in vivo. J Virol 80, 451–459.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, H., Wei, S.-Q., Engelman, A. (1999) Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J Biol Chem 274, 17358–17364.

    Article  CAS  PubMed  Google Scholar 

  18. Salahuddin, S. Z., Markham, P. D., Wong-Staal, F., et al. (1983) Restricted expression of human T-cell leukemia–lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology 129, 51–64.

    Article  CAS  PubMed  Google Scholar 

  19. Adachi, A., Gendelman, H. E., Koenig, S., et al. (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59, 284–291.

    CAS  PubMed  Google Scholar 

  20. Dorfman, T., Luban, J., Goff, S. P., et al. (1993) Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 67, 6159–6169.

    CAS  PubMed  Google Scholar 

  21. Julias, J. G., Ferris, A. L., Boyer, P. L., et al. (2001) Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J. Virol. 75, 6537–6546.

    Article  CAS  PubMed  Google Scholar 

  22. Butler, S. L., Hansen, M. S. T., Bushman, F. D. (2001) A quantitative assay for HIV DNA integration in vivo. Nat Med 7, 631–634.

    Article  CAS  PubMed  Google Scholar 

  23. Engelman, A., Englund, G., Orenstein, J. M., et al. (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69, 2729–2736.

    CAS  PubMed  Google Scholar 

  24. Miller, M. D., Wang, B., Bushman, F. D. (1995) Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J Virol 69, 3938–3944.

    CAS  PubMed  Google Scholar 

  25. Harrison, G. P., Mayo, M. S., Hunter, E., et al. (1998) Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5′ and 3′ of the catalytic site. Nucleic Acids Res 26, 3433–3442.

    Google Scholar 

  26. Byers, K. B., Engelman, A., Fontes, B. (2004) General guidelines for experimenting with HIV, in Protocols in Immunology Supplement 59 (Coligan, J. E., Bierer, B. E., Margulies, D. H., Shevach, E. M., and Strober, W., eds.), John Wiley & Sons, Hoboken, NJ, pp. 12.1.1–12.1.9.

    Google Scholar 

  27. O’Doherty, U., Swiggard, W. J., Malim, M. H. (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74, 10074–10080.

    Article  PubMed  Google Scholar 

  28. Sambrook, J., Fritsch, E. F., Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 9.34–9.36.

    Google Scholar 

  29. Wei, S.-Q., Mizuuchi, K., Craigie, R. (1997) A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J 16, 7511–7520.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, H., Engelman, A. (2001) Asymmetric processing of human immunodeficiency virus type 1 cDNA in vivo: implications for functional end coupling during the chemical steps of DNA transposition. Mol Cell Biol 21, 6758–6767.

    Article  CAS  PubMed  Google Scholar 

  31. Bao, K. K., Wang, H., Miller, J. K., Erie, D. A., Skalka, A. M., and Wong, I. (2003) Functional oligomeric state of avian sarcoma virus integrase. J Biol Chem 278, 1323–1327.

    Article  CAS  PubMed  Google Scholar 

  32. Faure, A., Calmels, C., Desjobert, C., et al. (2005) HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res 33, 977–986.

    Article  CAS  PubMed  Google Scholar 

  33. Guiot, E., Carayon, K., Delelis, O., et al. (2006) Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J Biol Chem 281, 22707–22719.

    Article  CAS  PubMed  Google Scholar 

  34. Li, M., Mizuuchi, M., Burke, T. R. J., et al. (2006) Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 25, 1295–1304.

    Article  CAS  PubMed  Google Scholar 

  35. Vincent, K. A., York-Higgins, D., Quiroga, M., et al. (1990) Host sequences flanking the HIV provirus. Nucleic Acids Res 18, 6045–6047.

    Article  CAS  PubMed  Google Scholar 

  36. Vink, C., Groenink, M., Elgersma, Y., et al. (1990) Analysis of the junctions between human immunodeficiency virus type 1 proviral DNA and human DNA. J Virol 64, 5626–5627.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank J.E. Daigle, K. McGee-Estrada, and N.K. Raghavendra for critically reading the manuscript. This work was supported by NIH grants AI39394, AI52014, and AI70042.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Engelman, A. (2008). Isolation and Analysis of HIV-1 Preintegration Complexes. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols. Methods In Molecular Biology™, vol 485. Humana Press. https://doi.org/10.1007/978-1-59745-170-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-170-3_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-859-1

  • Online ISBN: 978-1-59745-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics