Skip to main content

Activation of Oocytes After Nuclear Transfer

  • Protocol
Nuclear Transfer Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 348))

Abstract

After nuclear transfer, the recipient oocyte must be stimulated to initiate development. This stimulation is achieved by inducing changes in the oocyte cytoplasm that normally are triggered by the sperm during fertilization. In most cases, such changes include a transient increase in the intracellular-free calcium concentration induced by an electrical pulse or alternatively, by chemical agents. Many times, particularly in aged oocytes, this calcium signal is sufficient to stimulate the oocyte developmental program. Other activation protocols were designed to target pathways downstream of the initial calcium signal to affect the activity of regulatory proteins that play central roles in maintaining developmental arrest. This is achieved by the application of protein kinase or protein synthesis inhibitors; combined with a calcium stimulus such inhibitors are widely used for oocyte activation after nuclear transfer and are able to support embryonic development to term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sagata, N. (1996) Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance. Trends Cell. Biol. 6, 22–28.

    Article  CAS  PubMed  Google Scholar 

  2. Schultz, R. M. and Kopf, G. S. (1995) Molecular Basis of mammalian egg activation, in Current topics in developmental biology (Pedersen, R. A. and Schatten, G. P., eds.), Academic Press, San Diego, CA, pp. 21–62.

    Chapter  Google Scholar 

  3. Macháty, Z. and Prather, R. S. (1998) Strategies for activating nuclear transfer oocytes. Reprod. Fertil. Dev. 10, 599–613.

    Article  PubMed  Google Scholar 

  4. Alberio, R., Zakhartchenko, V., Motlik, J., and Wolf E. (2001) Mammalian oocyte activation: lessons from the sperm and implications for nuclear transfer. Int. J. Dev. Biol. 45, 797–809.

    CAS  PubMed  Google Scholar 

  5. Jones, K. T. (1998) Ca2+ oscillations in the activation of the egg and development of the embryo in mammals. Int. J. Dev. Biol. 42, 1–10.

    CAS  PubMed  Google Scholar 

  6. Zimmermann, U. and Vienken, J. (1982) Electric field-induced cell-to-cell fusion. J. Membrane Biol. 67, 165–182.

    Article  CAS  Google Scholar 

  7. Ozil, J. P. (1990) The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development 109, 117–127.

    CAS  PubMed  Google Scholar 

  8. Collas, P. and Barnes, F. L. (1994) Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Mol. Reprod. Dev. 38, 264–267.

    Article  CAS  PubMed  Google Scholar 

  9. Wells, D. N., Misica, P. M., Day, T. A., and Tervit, H. R. (1997) Production of cloned lambs from an established embryonic cell line: a comparison between in vivo-and in vitro-matured cytoplasts. Biol. Reprod. 57, 385–393.

    Article  CAS  PubMed  Google Scholar 

  10. Polejaeva, I. A., Chen, S. H., Vaught, T. D., et al. (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.

    Article  CAS  PubMed  Google Scholar 

  11. Baguisi, A., Behboodi, E., Melican, D. T., et al. (1999) Production of goats by somatic cell nuclear transfer. Nat. Biotech. 17, 456–461.

    Article  CAS  Google Scholar 

  12. Stice, S. L. and Robl, J. M. (1988) Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39, 657–664.

    Article  CAS  PubMed  Google Scholar 

  13. Amano, T., Tani, T., Kato, Y., and Tsunoda, Y. (2001) Mouse cloned from embryonic stem (ES) cells synchronized in metaphase with nocodazole. J. Exp. Zool. 289, 139–145.

    Article  CAS  PubMed  Google Scholar 

  14. Steinhardt, R. A., Epel, D., Carroll, E. J., Jr., and Yanagimachi, R. (1974) Is calcium ionophore a universal activator for unfertilised eggs? Nature 252, 41–43.

    Article  CAS  PubMed  Google Scholar 

  15. Shiina, Y., Kaneda, M., Matsuyama, K., Tanaka, K., Hiroi, M., and Doi, K. (1993) Role of the extracellular Ca2+ on the intracellular Ca2+ changes in fertilized and activated mouse oocytes. J. Reprod. Fertil. 97, 143–150.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, W.-H., Macháty, Z., Ruddock, N., et al. (1999) Activation of porcine oocytes with calcium ionophore: effects of extracellular calcium. Mol. Reprod. Dev. 53, 99–107.

    Article  CAS  PubMed  Google Scholar 

  17. Morgan, A. and Jacob, R. (1994) Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem. J. 300, 665–672.

    CAS  PubMed  Google Scholar 

  18. Sims, M. and First, N. L. (1993) Production of calves by transfer of nuclei from cultured inner cell mass. Proc. Natl. Acad. Sci. USA 90, 6143–6147.

    Article  Google Scholar 

  19. Endo, M. (1985) Calcium release from sarcoplasmic reticulum. Curr. Top. Membr. Transp. 25, 181–230.

    CAS  Google Scholar 

  20. Whittingham, D. G. and Siracusa, G. (1978) The involvement of calcium in the activation of mammalian oocytes. Exp. Cell Res. 113, 311–317.

    Article  CAS  PubMed  Google Scholar 

  21. Lasserre, A., Cebral, E., and Vitullo, A. D. (1999) The kinetics of oocyte activation and dynamics of polar body formation in Calomys musculinus and Calomys lauca (Rodentia-Sigmodontidae). Zygote 7, 347–356.

    Article  CAS  PubMed  Google Scholar 

  22. Kline, D. and Kline, J. T. (1992) Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149, 80–89.

    Article  CAS  PubMed  Google Scholar 

  23. Wakayama, T., Perry, A. C.F., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.

    Article  CAS  PubMed  Google Scholar 

  24. Ilyin, V. and Parker, I. (1992) Effects of alcohols on responses evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol. 448, 339–354.

    CAS  PubMed  Google Scholar 

  25. Gray, N., Détivaud, L., Doerig, C., and Meijer L. (1999) ATP-site directed inhibitors of cyclin-dependent kinases. Curr. Med. Chem. 6, 859–975.

    CAS  PubMed  Google Scholar 

  26. Nishizawa, M., Furuno, N., Okazaki, K., Tanaka, H., Ogawa, Y., and Sagata, N. (1993) Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. EMBO J. 12, 4021–4027.

    CAS  PubMed  Google Scholar 

  27. Moos, J., Xu, Z., Schultz, R. M., and Kopf, G. S. (1996) Regulation of nuclear envelope assembly/disassembly by MAP kinase. Dev. Biol. 175, 358–361.

    Article  CAS  PubMed  Google Scholar 

  28. Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Northey, D. L., Schutzkus, V., and First, N. L. (1994) Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev. Biol. 166, 729–739.

    Article  CAS  PubMed  Google Scholar 

  29. Collas, P., Chang, T., Long, C., and Robl, J. M. (1995) Inactivation of histone H1 kinase by Ca2+ in rabbit oocytes. Mol. Reprod. Dev. 40, 253–258.

    Article  CAS  PubMed  Google Scholar 

  30. Wen, W., Taylor, S. S., and Meinkoth, J. L. (1995) The expression and intracellular distribution of the heat-stable protein kinase inhibitor is cell cycle regulated. J. Biol. Chem. 270, 2041–2046.

    Article  CAS  PubMed  Google Scholar 

  31. Rickords, L. F., Peters, M. S., and Stumpf, T. T. (1992) Effect of the protein kinase inhibitor staurosporine on oocyte activation of in vitro matured oocytes. Biol. Reprod. 46(Suppl 1), 82.

    Google Scholar 

  32. Mayes, M. A., Stogsdill, P. L., and Prather, R. S. (1995) Parthenogenetic activation of pig oocytes by protein kinase inhibition. Biol. Reprod. 53, 270–275.

    Article  CAS  PubMed  Google Scholar 

  33. Tatemoto, H., and Muto, N. (2001) Mitogen-activated protein kinase regulates normal transition from metaphase to interphase following parthenogenetic activation in porcine oocytes. Zygote 1, 15–23.

    Google Scholar 

  34. Green, K. M., Kim, J.-H., Wang, W.-H., Day, B. N., and Prather, R. S. (1999) Effect of myosin light chain kinase, protein kinase A, and protein kinase C inhibition on porcine oocyte activation. Biol. Reprod. 61, 111–119.

    Article  CAS  PubMed  Google Scholar 

  35. Cibelli, J. B., Stice, S. L., Golueke, P. J., et al. (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258.

    Article  CAS  PubMed  Google Scholar 

  36. Loi, P., Ledda, S., Fulka, J., Jr., Cappai, P., and Moor, R. M. (1998) Development of parthenogenetic and cloned ovine embryos: effect of activation protocols. Biol. Reprod. 58, 1177–1187.

    Article  CAS  PubMed  Google Scholar 

  37. Betthauser, J., Forsberg, E., Augenstein, M., et al. (2000) Production of cloned pigs from in vitro systems. Nature Biotech. 18, 1055–1059.

    Article  CAS  Google Scholar 

  38. Reggio, B. C., James, A. N., Green, H. L., et al. (2001) Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: oocytes derived from both follicle-stimulating hormone-stimulated and nonstimulated abattoir-derived ovaries. Biol. Reprod. 65, 1528–1533.

    Article  CAS  PubMed  Google Scholar 

  39. Mitalipov, S. M., Yeoman, R. R., Nusser, K. D., and Wolf, D. P. (2002) Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells. Biol. Reprod. 66, 1367–1373.

    Article  CAS  PubMed  Google Scholar 

  40. de la Fuente, R. and King, W. A. (1998) Developmental consequences of karyokinesis without cytokinesis during the first mitotic cell cycle of bovine parthenotes. Biol. Reprod. 58, 952–962.

    Article  Google Scholar 

  41. Schlegel, R., Belinsky, G. S., and Harris, M. O. (1990) Premature mitosis induced in mammalian cells by the protein kinase inhibitors 2-aminopurine and 6-dimethylaminopurine. Cell Growth Differ. 1, 171–178.

    CAS  PubMed  Google Scholar 

  42. Kitagawa, M., Okabe, T., Ogino, H., et al. (1993) Butyrolactone I, a selective inhibitor of cdk2 and cdc2 kinase. Oncogene 8, 2425–2432.

    CAS  PubMed  Google Scholar 

  43. Motlik, J., Pavlok, A., Kubelka, M., Kalous, J., and Kalab, P. (1998) Interplay between CDC2 kinase and MAP kinase pathway during maturation of mammalian oocytes. Theriogenology 49, 461–469.

    Article  CAS  PubMed  Google Scholar 

  44. Dinnyés, A., Hirao, Y., and Nagai, T. (2000) Parthenogenetic activation of porcine oocytes by electric pulse and/or butyrolactone I treatment. Cloning 1, 209–216.

    Article  Google Scholar 

  45. Hill, J. R., Winger, Q. A., Long, C. R., Looney, C. R., Thompson, J. A., and Westhusin, M. E. (2000) Development rates of male bovine nuclear transfer embryos derived from adult and fetal cells. Biol. Reprod. 62, 1135–1140.

    Article  CAS  PubMed  Google Scholar 

  46. Meng, L., Ely, J. J., Stouffer, R. L., and Wolf, D. P. (1997) Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57, 454–459.

    Article  CAS  PubMed  Google Scholar 

  47. Kishi, M., Itagaki, Y., Takakura, R., et al. (2000) Nuclear transfer in cattle using colostrum-derived mammary gland epithelial cells and ear-derived fibroblast cells. Theriogenology 54; 675–684.

    Article  CAS  PubMed  Google Scholar 

  48. Presicce, G. A. and Yang, X. (1994) Parthenogenetic development of bovine oocytes matured in vitro for 24 h and activated by ethanol and cycloheximide. Mol. Reprod. Dev. 38, 380–385.

    Article  CAS  PubMed  Google Scholar 

  49. Yang, X., Jiang, S., and Shi, Z. (1992) Improved activation by combined cycloheximide and electric pulse treatment of bovine follicular oocytes matured in vitro for 23–24 hours. Biol. Reprod. 46(Suppl 1), 117.

    Google Scholar 

  50. Kubota, C., Yamakuchi, H., Todoroki, J., et al. (2000) Six cloned calves produced from adult fibroblast cells after long-term culture. Proc. Natl. Acad. Sci. USA 97, 990–995.

    Article  CAS  PubMed  Google Scholar 

  51. Yong, Z., and Yuqiang, L. (1998) Nuclear-cytoplasmic interaction and development of goat embryos reconstructed by nuclear transplantation: production of goats by serially cloning embryos. Biol. Reprod. 58, 266–269.

    Article  CAS  PubMed  Google Scholar 

  52. Shin, T., Kraemer, D., Pryor, J., et al. (2002) A cat cloned by nuclear transplantation. Nature 415, 859.

    Article  CAS  PubMed  Google Scholar 

  53. Chesné, P., Adenot, P. G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J. P. (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nature Biotech. 20, 366–369.

    Article  Google Scholar 

  54. Zakhartchenko, V., Durcova-Hills, G., Stojkovic, M., et al. (1999) Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts. J. Reprod. Fertil. 115, 325–331.

    Article  CAS  PubMed  Google Scholar 

  55. Gibbons, J., Arat, S., Rzucidlo, J., et al. (2002) Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol. Reprod. 66, 895–900.

    Article  CAS  PubMed  Google Scholar 

  56. Loi, P., Clinton, M., Barboni, B., et al. (2002) Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol. Reprod. 67, 126–132.

    Article  CAS  PubMed  Google Scholar 

  57. Woods, G. L., White, K. L., Vanderwall, D. K., et al. (2003) A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.

    Article  CAS  PubMed  Google Scholar 

  58. Soloy, E., Kanka, J., Viuff, D., Smith, S. D., Callesen, H., and Greve, T. (1997) Time course of pronuclear deoxyribonucleic acid synthesis in parthenogenetically activated bovine oocytes. Biol. Reprod. 57, 27–35.

    Article  CAS  PubMed  Google Scholar 

  59. Alberio, R., Brero, S., Motlik, J., Wolf, E., and Zakhartchenko, V. (2001) Remodeling of donor nuclei, DNA synthesis, and ploidy of bovine cumulus cell nuclear transfer embryos: effect of activation protocol. Mol. Reprod. Dev. 59, 371–379.

    Article  CAS  PubMed  Google Scholar 

  60. Latham, K. E. and Westhusin, M. E. (2000) Nuclear transplantation and cloning in mammals, in Methods in Molecular Biology (Tuan, R. S. and Lo, C. W., eds.) Humana, Totowa, NJ, pp. 405–425.

    Google Scholar 

  61. Ramsoondar, J. J., Macháty, Z., Costa, C., Williams, B. L., Fodor, W. L., and Bondioli, K. R. (2003) Production of α1,3-galactosyltransferase-knockout cloned pigs expressing human α1,2-fucosylosyltransferase. Biol. Reprod. 69, 437–445.

    Article  CAS  PubMed  Google Scholar 

  62. Miyoshi, K., Gibbons, J., Rzucidlo, S. J., Arat, S., and Stice, S. L. (2001) Effective fusion method for reconstruction of bovine embryos from granulose cells and enucleated oocytes. Theriogenology 55, 280.

    Google Scholar 

  63. Navara, C. S., First, N. L., and Schatten, G. (1994) Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster. Dev. Biol. 162, 29–40.

    Article  CAS  PubMed  Google Scholar 

  64. Macháty, Z., Ramsoondar, J. J., and Bondioli, K. R. (2002) Inhibition of second polar body extrusion in porcine oocytes via activation of protein kinase C. Theriogenology 57, 705.

    Google Scholar 

  65. Wakayama, T., Rodriguez, I., Perry, A. C., Yanagimachi, R., and Mombaerts, P. (1999) Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. USA 96, 14,984–14,989.

    Article  CAS  PubMed  Google Scholar 

  66. Lai, L., Tao, T., Macháty, Z., et al. (2001) Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biol. Reprod. 65, 1558–1564.

    Article  CAS  PubMed  Google Scholar 

  67. Chung, Y. G., Mann, M. R., Bartolomei, M. S., and Latham, K. E. (2002) Nuclear-cytoplasmic “tug of war” during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos. Biol. Reprod. 66, 1178–1184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Macháty, Z. (2006). Activation of Oocytes After Nuclear Transfer. In: Verma, P.J., Trounson, A.O. (eds) Nuclear Transfer Protocols. Methods in Molecular Biology™, vol 348. Humana Press. https://doi.org/10.1007/978-1-59745-154-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-154-3_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-280-3

  • Online ISBN: 978-1-59745-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics