Skip to main content

Role of Polyamines in the Regulation of Chromatin Acetylation

  • Chapter
Polyamine Cell Signaling

Abstract

Changes in chromatin structure can affect gene transcription, cell proliferation, and differentiation (1). The structural remodeling of chromatin associated with gene expression is mediated in part by the coordinated targeting of various chromatin modifying enzymes to gene regulatory regions via recruitment by transcription factors and accessory proteins (2). The dynamic interplay between various classes of enzymes that acetylate/deacetylate, phosphorylate/dephosphorylate, and methylate/demethylate proteins determines the pattern of chemically modified amino acid residues in the N-terminal tail domains of the core histones that comprise nucleosomes. The specific pattern of histone modification, or “histone code,” is then interpreted by proteins that selectively bind to modified residues, providing a platform for the protein machinery responsible for establishing the chromatin into a transcriptionally silent or activated state (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolffe, A. (1998) Chromatin Structure and Function. Academic Press, San Diego, CA.

    Google Scholar 

  2. Spiegelman, B. M. and Heinrich, R. (2004) Biological control through regulated transcriptional coactivators. Cell 119, 157–167.

    Article  PubMed  CAS  Google Scholar 

  3. Hake, S. B., Xiao, A., and Allis, C. D. (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br. J. Cancer 90, 761–769.

    Article  PubMed  CAS  Google Scholar 

  4. Fischle, W., Wang, Y., and Allis, C. D. (2003) Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183.

    Article  PubMed  CAS  Google Scholar 

  5. Casti, A., Guarnieri, C., Dall’Asta, R., and ClÔ, C. (1977) Effect of spermine on acetylation of histones in rabbit heart. J. Mol. Cell. Cardiol. 9, 63–71.

    Article  PubMed  CAS  Google Scholar 

  6. Bryans, M., Harley, E., and Gilmour, S. K. (1996) Elevated cellular polyamine levels enhance promoter activity in vivo. Biochem. Biophys. Res. Commun. 226, 618–625.

    Article  PubMed  CAS  Google Scholar 

  7. Celano, P., Baylin, S. B., and Casero, R. A. (1989)Polyamines differentially modulate the transcription of growth-associated genes in human colon carcinoma cells. J. Biol. Chem. 264, 8922–8927.

    PubMed  CAS  Google Scholar 

  8. Wang, J. Y. J., McCormack, S. A., Viar, M. J., et al.(1993) Decreased expression of protooncogenes c-fos, c-myc, and c-jun following polyamine depletion in IEC-6 cells. Am. J. Physiol. 265, G331–G338.

    PubMed  CAS  Google Scholar 

  9. Veress, I., Haghighi, S., OPulkka, A., and Pajunen, A. (2000) Changes in gene expression in response to polyamine depletion indicates selective stabilization of mRNAs. Biochem. J. 346, 185–191.

    Article  PubMed  CAS  Google Scholar 

  10. Feuerstein, B. G., Pattabiraman, N., and Marton, L. J. (1990) Molecular mechanics of the interactions of spermine with DNA: DNA bending as a result of ligand binding. Nucleic Acids Res. 18, 1271–1282.

    Article  PubMed  CAS  Google Scholar 

  11. Matthews, H. R. (1993) Polyamines, chromatin structure and transcription. BioEssays 15, 561–566.

    Article  PubMed  CAS  Google Scholar 

  12. Colson, P. and Houssier, C. (1989) Polyamine addition to preparation media induces chromatin condensation, irreversibly at low ionic strength. FEBS Lett. 257, 141–144.

    Article  PubMed  CAS  Google Scholar 

  13. Pohjanpelto, P. and Knuutila, S. (1982) Polyamine deprivation causes major chromosome aberrations in a polyamine-dependent Chinese hamster ovary cell line. Exp. Cell Res. 141, 333–339.

    Article  PubMed  CAS  Google Scholar 

  14. Snyder, R. D. (1989) Polyamine depletion is associated with altered chromatin structure in HeLa cells. Biochem. J. 260, 697–704.

    PubMed  CAS  Google Scholar 

  15. Sunkara, P. S., Chang, C. C., and Prakash, N. J. (1983) Role of polyamines during chromosome condensation of mammalian cells. Cell. Biol. Int. Rep. 7, 455–465.

    Article  PubMed  CAS  Google Scholar 

  16. Laitinen, J., Stenius, K., Eloranta, T. O., and Holtta, E. (1998) Polyamines may regulate S-phase progression but not the dynamic changes of chromatin during the cell cycle. J. Cell. Biochem. 68, 200–212.

    Article  PubMed  CAS  Google Scholar 

  17. Kadosh, D. and Struhl, K. (1998) Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18, 5121–5127.

    PubMed  CAS  Google Scholar 

  18. Pollard, K. J., Samuels, M. L., Crowley, K. A., Hansen, J. C., and Peterson, C. L. (1999) Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J. 18, 5622–5633.

    Article  PubMed  CAS  Google Scholar 

  19. Megosh, L., Gilmour, S. K., Rosson, D., et al. (1995) Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res. 55, 4205–4209.

    PubMed  CAS  Google Scholar 

  20. Smith, M. K., Trempus, C. S., and Gilmour, S. K. (1998) Co-operation between follicular ornithine decarboxylase and v-Ha-ras induces spontaneous papillomas and malignant conversion in transgenic skin. Carcinogenesis 19, 1409–1415.

    Article  PubMed  CAS  Google Scholar 

  21. Hobbs, C. A., Paul, B. A., and Gilmour, S. K. (2003) Elevated levels of polyamines alter chromatin in murine skin and tumors without global changes in nucleosome acetylation. Exp. Cell Res. 290, 427–436.

    Article  PubMed  CAS  Google Scholar 

  22. Turner, B. M. (2000) Histone acetylation and an epigenetic code. Bioessays 22, 836–845.

    Article  PubMed  CAS  Google Scholar 

  23. Jeppesen, P. (1997) Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays 19, 67–74.

    Article  PubMed  CAS  Google Scholar 

  24. Maison, C. and Almouzni, G. (2004) HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5, 296–304.

    Article  PubMed  CAS  Google Scholar 

  25. Nielsen, S. J., Schneider, R., Bauer, U. M., et al. (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565.

    Article  PubMed  CAS  Google Scholar 

  26. O’Brien, T. G. (1976) The induction of ornithine decarboxylase as an early, possibly obligatory event in mouse skin carcinogenesis. Cancer Res. 36, 2644–2653.

    PubMed  CAS  Google Scholar 

  27. Lee, D. Y., Hayes, J. J., Pruss, D., and Wolffe, A. P. (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84.

    Article  PubMed  CAS  Google Scholar 

  28. Dod, B., Kervabon, A., and Parello, J. (1982) Effect of cations on the acetylation of chromatin in vitro. Eur. J. Biochem. 121, 401–405.

    Article  PubMed  CAS  Google Scholar 

  29. Estepa, I. and Pestana, A. (1981) Activation by polyamines of the acetylation of endogenous histones in isolated chromatin and nuclei from Artemia. Eur. J. Biochem. 119, 431–436.

    Article  PubMed  CAS  Google Scholar 

  30. Libby, P. R. and Bertram, J. S. (1980) Biphasic effect of polyamines on chromatin-bound histone deacetylase. Arch. Biochem. Biophys. 201, 359–361.

    Article  PubMed  CAS  Google Scholar 

  31. Vu, Q. A., Zhang, D. E., Chroneos, Z. C., and Nelson, D. A. (1987) Polyamines inhibit the yeast histone deacetylase. FEBS Lett. 220, 79–83.

    Article  PubMed  CAS  Google Scholar 

  32. Vergani, L., Mascetti, G., and Nicolini, C. (1998) Effects of polyamines on higher-order folding of in situ chromatin. Mol. Biol. Rep. 25, 237–244.

    Article  PubMed  CAS  Google Scholar 

  33. Hobbs, C. A. and Gilmour, S. K. (2000) High levels of intracellular polyamines promote histone acetyltransferase activity resulting in chromatin hyperacetylation. J. Cell. Biochem. 77, 345–360.

    Article  PubMed  CAS  Google Scholar 

  34. Hobbs, C. A., Paul, B. A., and Gilmour, S. K. (2002) Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res. 62, 67–74.

    PubMed  CAS  Google Scholar 

  35. Moshier, J. A., Malecka-Panas, E., Geng. H., Dosescu, J., Skunca, M., and Majumdar, A. P. (1995) Ornithine decarboxylase transformation of NIH/3T3 cells is mediated by altered epidermal growth factor receptor activity. Cancer Res. 55, 5358–5365.

    PubMed  CAS  Google Scholar 

  36. Cho, K. S., Elizondo, L. I., and Boerkoel, C. F. (2004) Advances in chromatin remodeling and human disease. Curr. Opin. Genet. Dev. 14, 308–315.

    Article  PubMed  CAS  Google Scholar 

  37. Yang, X. J. (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976.

    Article  PubMed  CAS  Google Scholar 

  38. Lan, L., Hayes, C. S., Laury-Kleintop, L., and Gilmour, S. (2005) Suprabasal induction of ornithine decarboxylase in adult mouse skin is sufficient to activate keratinocytes. J. Invest. Dermatol. 124, 602–614.

    Article  PubMed  CAS  Google Scholar 

  39. Kalkhoven, E. (2004) CBP and p300: HATs for different occasions. Biochem. Pharmacol. 68, 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  40. Turner, B. M. (1989) Acetylation and deacetylation of histone H4 continue through metaphase with depletion of more-acetylated isoforms and altered site usage. Exp. Cell Res. 182, 206–214.

    Article  PubMed  CAS  Google Scholar 

  41. Kelly, T. J., Qin, S., Gottschling, D. E., and Parthun, M. R. (2000) Type B histone acetyltransferase Hat 1 participates in telomeric silencing. Mol. Cell. Biol. 20, 7051–7058.

    Article  PubMed  CAS  Google Scholar 

  42. Grunstein, M. (1998) Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328.

    Article  PubMed  CAS  Google Scholar 

  43. Shore, L. J., Peralta Soler, A., and Gilmour, S. K. (1997) Ornithine decarboxylase expression leads to translocation and activation of protein kinase CK2 in vivo. J. Biol. Chem. 272, 12,536–12,543.

    Article  PubMed  CAS  Google Scholar 

  44. Van Lint, C., Emiliani, S., and Verdin, E. (1996)The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 5, 245–253.

    PubMed  CAS  Google Scholar 

  45. Sambucetti, L. C., Fischer, D. D., Zabludoff, S., et al. (1999) Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J. Biol. Chem. 274, 34,940–34,947.

    Article  PubMed  CAS  Google Scholar 

  46. Francastel, C., Schubeler, D., Martin, D. I., and Groudine, M. (2000) Nuclear compartmentalization and gene activity. Nat. Rev. Mol. Cell Biol. 1, 137–143.

    Article  PubMed  CAS  Google Scholar 

  47. Gasser, S. M. (2001) Positions of potential: nuclear organization and gene expression. Cell 104, 639–642.

    Article  PubMed  CAS  Google Scholar 

  48. Kee, K., Foster, B. A., Merali, S., et al. (2004) Activated polyamine catabolism depletes acetyl-CoA pools and suppresses prostate tumor growth in TRAMP mice. J. Biol. Chem. 279, 40,076–40,083.

    Article  PubMed  CAS  Google Scholar 

  49. Coleman, C. S., Pegg, A. E., Megosh, L. C., Guo, Y., Sawicki, J. A., and O’Brien, T. G. (2002) Targeted expression of spermidine/spermine N1-acetyltransferase increases susceptibility to chemically induced skin carcinogenesis. Carcinogenesis 23, 359–364.

    Article  PubMed  CAS  Google Scholar 

  50. Libby, P. R. (1978) Calf liver nuclear N-acetyltransferases. Purification and properties of two enzymes with both spermidine acetyltransferase and histone acetyltransferase activities. J. Biol. Chem. 253, 233–237.

    PubMed  CAS  Google Scholar 

  51. Cullis, P. M., Wolfenden, R., Cousens, L. S., and Alberts, B. M. (1982) Inhibition of histone acetylation by N-[2-(S-coenzyme A)acetyl] spermidine amide, a multisubstrate analog. J. Biol. Chem. 257, 12,165–12,169.

    PubMed  CAS  Google Scholar 

  52. Ekwall, K., Olsson, T., Turner, B. M., Cranston, G., and Allshire, R. C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hobbs, C.A., Gilmour, S.K. (2006). Role of Polyamines in the Regulation of Chromatin Acetylation. In: Wang, JY., Casero, R.A. (eds) Polyamine Cell Signaling. Humana Press. https://doi.org/10.1007/978-1-59745-145-1_5

Download citation

Publish with us

Policies and ethics