Skip to main content

Yeast Two-Hybrid Assay to Identify Host–Virus Interactions

  • Protocol
Plant Virology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 451))

Abstract

The small size of most plant virus genomes and their very limited coding capacities requires that plant viruses are dependent on proteins expressed by the host plant for all stages of their life cycle. Identification of these host proteins is essential if we are to understand in any meaningful way the interactions that exist between virus and plant. A variety of methods are now available to isolate and study interacting proteins, however, the yeast two-hybrid (Y2H) assay system, which was one of the earliest mass analysis methods to be developed [Nature 340:245–246, 1989] remains one of the most popular and amenable approaches in current use.

The Y2H method works by expressing two candidate interacting proteins together in the yeast cell. The (bait and prey) proteins under study are fused either to a promoter-specific DNA-binding domain or to a transcription activation domain. Interaction in the yeast nucleus between the bait and prey proteins brings the transcription activation and DNA-binding domains together so that they can initiate expression of a reporter gene. The reporter may be nonselective, such as the β-galactosidase (LacZ) protein, or be selective by complementing a chromosomal mutation in a metabolic pathway for, for example, leucine or histidine biosynthesis. Individual bait proteins can be screened for interaction against a library of prey proteins, with any yeast colonies that grow on selective plates containing potential interacting partners.

Using the Y2H system, a number of plant proteins interacting with viral proteins have been identified, recently, increasing our knowledge of the molecular basis of viral infection and host defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Cusick, M.E., Klitgord, N., Vidal, M. and Hill, D.E. (2005) Interactome: gateway into systems biology. Hum. Mol. Genet. 14, R171–R181.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Ito, T., Chiba, T. and Yoshida, M. (2001) Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol. 19, S23–S27.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Fields, S. (2005) High-throughput two-hybrid analysis. FEBS J. 272, 5391–5399.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Finley Jr., R.L. and Brent, R. (1994). Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc. Natl. Acad. Sci. USA 91, 12980–12984.

    Article  CAS  Google Scholar 

  6. 6. Ren, T., Qu, F. and Morris, T.J. (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to Turnip crinkle virus. Plant Cell 12, 1917–1925.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Selth, L.A., Dogra, S.C., Rasheed, M.S., Healy, H., Randles, J.W. and Rezaian, M.A. (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17, 311–325.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Hao, L., Wang, H., Sunter, G. and Bisaro, D.M. (2003) Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15, 1034–1048.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Wang, H., Hao, L., Shung, C-Y., Sunter, G. and Bisaro, D.M. (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15, 3020–3032.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Wang, H., Buckley, K.J., Yang, X., Buchmann, R.C. and Bisaro, D.M. (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J. Virol. 79, 7410–7418.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Anandalakshmi, R., Marathe, R., Ge, X., Herr Jr., J.M., Mau, C., Mallory, A., Pruss, G., Bowman, L. and Vance, V.B. (2000) A calmodulin-related protein that suppresses posttran-scriptional gene silencing in plants. Science 290, 142–144.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Uhrig, J., Canto, T., Marshall, D. and MacFarlane, S.A. (2004) Relocalization of nuclear ALY proteins to the cytoplasm by the Tomato bushy stunt virus p19 pathogenicity protein. Plant Physiol. 135, 2411–2423.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Canto, T., Uhrig, J.F., Swanson, M., Wright, K.M. and MacFarlane, S.A. (2006). Translocation of the TBSV P19 protein into the nucleus by ALY compromises its silencing suppressor activity. J. of Virol. 80, 9064–9072.

    Article  CAS  Google Scholar 

  14. 14. Abbink, T.E.M., Peart, J.R., Mos, T.N.M., Baulcombe, D.C., Bol, J.F. and Linthorst, H.J.M. (2002) Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology 295, 307–319.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Padmanabhan, M.S., Goregaoker, S.P., Golem, S., Shiferaw, H. and Culver, J.N. (2005) Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/ IAA26 is associated with disease development. J. Virol. 79, 2549–2558.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Soellick, T.R., Uhrig, J.F., Bucher, G.L., Kellman, J.W. and Schreier, P.H. (2000) The movement protein NSm of Tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification with interacting plant proteins. Proc. Natl. Acad. Sci. USA 97, 2373–2378.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Chen, M.H., Sheng, J., Hind, G., Handa, A.K. and Citovsky, V. (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J. 19, 913–920.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Wittman, S., Chatel, H., Fortin, M.G. and Laliberte, J.F. (1997) Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234, 84–92.

    Article  Google Scholar 

  19. 19. Schaad, M.C., Anderberg, R.J. and Carrington, J.C. (2000) Strain-specific interaction of the tobacco etch virus Nia protein with the translational initiation factor eIF4E in the yeast two-hybrid system. Virology 273, 300–306.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Ruffel, S., Dussault, M.H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. and Caranta, C. (2002) A natural recessive gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32, 1067–1075.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Gao, Z., Johansen, E., Eyers, S., Thomas, C.L., Ellis, N. and Maule, A.J. (2004) The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40, 376–385.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Lazo, P.S., Ochoa, A.G. and Gascón, S. (1978) α-galactosidase (melibiase) from Saccharomyces carlsbergenesis: structural and kinetic properties. Arch. Biochem. Biophys. 191:316–24.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Ma, H., Kunes, S., Schatz, P.J. and Botstein, D. (1987) Plasmid construction by homologous recombination in yeast. Gene 58, 201–21.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Nordgard, O., Dahle, O., Andersen, T. O. and Gabrielsen, O. S. (2001) JAB1/CSN5 interacts with the GAL4 DNA binding domain: a note of caution about two-hybrid interactions. Biochimie 83, 969–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

MacFarlane, S.A., Uhrig, J.F. (2008). Yeast Two-Hybrid Assay to Identify Host–Virus Interactions. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-102-4_44

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-827-0

  • Online ISBN: 978-1-59745-102-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics