Skip to main content

Soft Tissue Reconstructive Options for the Ulcerated or Gangrenous Diabetic Foot

  • Chapter
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

  • 1847 Accesses

Abstract

Diabetic foot and ankle wounds usually occur because of acute or repetitive trauma in an insensate and biomechanically unstable foot. The body is unable to heal the wound owing to persistent trauma, biomechanical abnormality, infection, inadequate blood flow, ineffective immune system, or poor nutrition and the acute wound converts into a chronic wound. The goal is to transform the chronic wound into an acute healing wound with healthy granulation tissue, neoepithelialization, and wrinkled skin edges. The steps to achieve a healthy healing wound include establishing a correct diagnosis, ensuring a good local blood supply, debriding the wound to a clean base, correcting the biomechanical abnormality, and nurturing the wound until it shows signs of healing. The subsequent reconstruction can then usually be accomplished by simple techniques 90% of the time and complex flap reconstruction in 10% of cases. It may involve partial foot amputation to develop a sufficient tissue envelope to close the wound or to stabilize the foot biomechanically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodeheaver GT. Wound cleansing, wound irrigation, wound disinfection, in Chronic Wound Care (Krasner D, Kane D. eds.), 2nd ed. Health Management Publication, Inc., Wayne PA, 1997, pp. 97-108.

    Google Scholar 

  2. Grayson ML, Gibbons GW, Balogh K, et al. Probing to bone in infected pedal ulcers: a clinical sign of osteomyelitis in diabetic patients. JAMA 1995;273:721–723.

    Article  PubMed  CAS  Google Scholar 

  3. Attinger CE, Cooper P, Blume P, Bulan EJ. The safest surgical incisions and amputations using the angiosome concept and doppler on arterial-arterial connections of the foot and ankle. Foot Ankle Clin N Am 2001;6:745–801.

    Article  CAS  Google Scholar 

  4. Wolff H, Hansson C. Larval therapy—an effective method of ulcer debridement, Clin Exp Dermatol 2003;28:134.

    Article  PubMed  CAS  Google Scholar 

  5. Sherman RA, Sherman J, Gilead L, et al. Maggot therapy in outpatients. Arch Phys Med Rehabil 2001;81:1226–1229.

    Article  Google Scholar 

  6. Rhodes GR, King TA. Delayed skin oxygenation following distal tibial revascularization. Implications for wound healing in late amputations. Am Surg 1986;52:519–525.

    PubMed  CAS  Google Scholar 

  7. Grant WP, Sullivan R, Sonenshine DE. Electron microscope investigation of the effects of diabetes mellitus on the Achilles tendon. J Foot Ankle Surg 1997;36:1.

    Google Scholar 

  8. Armstrong DG, Stacpoole-Shea, Nguyen H. Lengthening of the Achilles tendon in diabetic patients who are at high risk for ulceration of the foot. Adv Ortho Surg 1999;23:71.

    Google Scholar 

  9. Mueller MJ, Sinacore DR, Hastings MK, et al. Effect of Achilles tendon lengthening on neuropathic plantar ulcers, a randomized clinical trial. J Bone Joint Surg Am 2003;85a:1436.

    Google Scholar 

  10. Maluf KS, Mueller MJ, Hastings MK, et al. Tendon Achilles lengthening for the treatment neuropathic ulcers causes a temporary reduction in forefoot pressure associated with changes in plantar flexor power rather than ankle motion during gait. J Biomech 2004;37:897.

    Article  PubMed  CAS  Google Scholar 

  11. Falanga V. Growth factors and chronic wounds: the need to understand the microenvironment. J Dermatol 1992;19:667.

    PubMed  CAS  Google Scholar 

  12. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Inf Dis 2004;17:91.

    Article  Google Scholar 

  13. Steed DL, Donohoe D, Webster MW, et al. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. J Am Coll Surg 1996;183:61–64.

    PubMed  CAS  Google Scholar 

  14. Edgerton MT. The Art of Surgical Technique, Williams and Wilkins, Baltimore, 1988.

    Google Scholar 

  15. Morykwas MJ, Argenta LC, et al. Vacuum assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg 1997;38:553–562.

    Article  PubMed  CAS  Google Scholar 

  16. Lipsky BA, Berendt AR, Deery HG, et al. Diagnosis and treatment of diabetic foot infections. Clin Inf Dis 2004;39:885.

    Article  Google Scholar 

  17. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg 1997;38:563–576.

    Article  PubMed  CAS  Google Scholar 

  18. DeFranzo AJ, Argenta LC, Marks MW, et al. The use of vacuum-assisted closure therapy for the treatment of lower extremity wounds with exposed bone. Plast Reconstr Surg 2004;113:1339.

    Article  PubMed  Google Scholar 

  19. Joseph E, Hamori CA, Bergman S, et al. A prospective randomized trial of vacuum assisted closure versus standard therapy of chronic non-healing wounds. Wounds 2000;12:60.

    Google Scholar 

  20. Byrd HS, Spicer TE, Cierny G III. Management of open tibial fractures. Plast Reconstr Surg 1985;76:719.

    Article  PubMed  CAS  Google Scholar 

  21. Krizek TJ, Robson MC. The evolution of quantitative bacteriology in wound management. Am J Surg 1975;130:579.

    Article  PubMed  CAS  Google Scholar 

  22. Sheehan P, Jones P, Caselli A, et al. Percent change in wound area of diabetic foot ulcers over a 4 week period is a robust indicator of complete healing in a 12 week prospective trial. Diabetes Care 2003;26:1879.

    Article  PubMed  Google Scholar 

  23. Haimowitz JE, Margolis DJ. Moist wound healing, in Chronic Wound Care (Krasner D, Kane D, eds.), 2nd ed. Health Management Publication, Inc., Wayne PA, 1997, pp. 49–56.

    Google Scholar 

  24. Steed DL. The diabetic study group: clinical evaluation of recombinant human platelet derived growth factor for treatment of lower extremity diabetic ulcers. J Vasc Surg 1995;21:71–81.

    Article  PubMed  CAS  Google Scholar 

  25. Cullen B, Smith R, McCulloch, et al. Mechanism of action of Promogran, a protease modulating matrix for the treatment of diabetic foot ulcers. Diabetes Care 2002;25:1892.

    Article  Google Scholar 

  26. Veves A, Sheehan P, Pham HT. A randomized controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 2002;137:822.

    Article  PubMed  CAS  Google Scholar 

  27. Morbach S, Hoffmeier H, Ochs HR. An in-use observational study of the treatment of diabetic foot ulcers with Promogram & Regranex gel, Poster, 17th Clinical Symposium On Advances In Skin & Wound Care & in the 13th European Tissue Repair Society Meeting.

    Google Scholar 

  28. Bromberg BE, Song IC, Mohn MP. The use of pigskin as a temporary biological dressing. Plast Reconstr Surg 1965;36:80.

    Article  PubMed  CAS  Google Scholar 

  29. Bondoc CC, Butke JF. Clinical experience with viable frozen human skin and frozen skin bank. Ann Surg 1971;174:371.

    Article  PubMed  CAS  Google Scholar 

  30. Omar AA, Mavor AI, Jones AM, et al. Treatment of venous leg ulcers with Dermagraft. Eur J Vasc Endovasc Surg 2004;6:666.

    Article  Google Scholar 

  31. Falanga V, Sabolinski M. A bilayered skin construct (APLIGRAF) accelerates complete closure of hard to heal venous stasis ulcers. Wound Repair Regen 1999;7:201.

    Article  PubMed  CAS  Google Scholar 

  32. Veves A, Falanga V, Armstrong DG. Graftskin, a human skin equivalent, is effective in the management of non-infected neuropathic diabetic foot ulcers. Diabetes Care 2001;24:290–295.

    Article  PubMed  CAS  Google Scholar 

  33. Marston WA, Hanft J, Norwood P, et al. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized study. Diabetes Care 2003;26:1701.

    Article  PubMed  Google Scholar 

  34. Saap LJ, Donohue K, Falanga V. Clinical classification of bioengineered skin use and it correlation with healing of diabetic and venous ulcers. Dermatol Surg 2004;30:1095–1100.

    Article  PubMed  Google Scholar 

  35. Espensen EH, Nixon BP, Lavery LA, et al. Use of subatmospheric (VAC) therapy to improve bioengineered tissue grafting in diabetic foot wounds. J Am Podiatr Med Assoc 2002;92:396.

    Google Scholar 

  36. Hunt TK, Pai MP. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gyn Obstet 1972;135:561.

    CAS  Google Scholar 

  37. Pai MP, Hunt TK. Effect of varying oxygen tension on healing in open wounds. Surg Gyn Obstet 1972;135:756–757.

    CAS  Google Scholar 

  38. Hohn DC, Mackay RD, Halliday B, et al. The effect of oxygen tension on the microbiocidal function of leukocytes in wounds and in vitro. Surg Forum 1976;27:18–20.

    PubMed  CAS  Google Scholar 

  39. Bonomo SR, Davidson JD, Tyrone JW, et al. Enhancement of wound healing by hyperbaric oxygen and transforming growth factor beta3 in a new chronic wound model in aged rabbits. Arch Surg 2000;135:1148.

    Article  PubMed  CAS  Google Scholar 

  40. Faglia E, Favales F, Aldeghi A, et al. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer; a randomized study. Diabetes Care 1996;19:1338–1343.

    Article  PubMed  CAS  Google Scholar 

  41. Connolly WB, Hunt TK, Zederfeldt B, et al. Clinical comparison of wound closed by suture and adhesive tape. Am J Surg 1969;117:318.

    Article  Google Scholar 

  42. Janzing HM, Broos PL. Dermotraction: an effective technique for the closure of fasciotomy wounds: a preliminary report of 15 patients. J Orthop Trauma 2001;15:438.

    Article  PubMed  CAS  Google Scholar 

  43. Gorecki PJ, Cottam D, Ger R, et al. Lower extremity compartment syndrome following a laparoscopic Roux-en-Y gastric bypass. Obes Surg 2002;2:289.

    Article  Google Scholar 

  44. Rudolph R, Ballantyne DL. Skin grafts, in Plastic Surgery (McCarthy JG, ed.), Vol. 1, WB Saunders, Philadelphia, PA, 1990, pp. 221–274.

    Google Scholar 

  45. Currie LJ, Sharpe JR, Martin R. The use of fibrin glue in skin grafts and tissue engineered skin replacement: areview. Plast Reconstr Surg 2001;108:1713.

    Article  PubMed  CAS  Google Scholar 

  46. Blackburn JH, Boemi L, Hall WW, et al. Negative Pressure dressings as a bolster for skin grafts. Ann Plast Surg 1998;40:453.

    Article  PubMed  Google Scholar 

  47. Scherer LA, Shiver S, Chang M, et al. The vacuum assisted closure device: a method of securing skin grafts and improving skin graft survival. Arch Surg 137:930.

    Google Scholar 

  48. Moiemen NS, Staiano JJ, Ojeh NO, et al. Reconstructive surgery with a dermal regeneration template: clinical and histological study. Plast Reconstr Surg 2001;108:93.

    Article  PubMed  CAS  Google Scholar 

  49. Frame JD, Still J, Lakhel-LeCoadau A, et al. Use of dermal regeneration template in contracture release procedures: a multicenter evaluation. Plast Reconstr Surg 2004;113:1330.

    Article  PubMed  Google Scholar 

  50. Molnar JA, Defranzo AJ, Hadaegh A, et al. Acceleration of Integra incorporation in complex tissue defects with subatmospheric pressure. Plast Reconstr Surg 2004;113:1339.

    Article  PubMed  Google Scholar 

  51. Banis JC. Glabrous skin graft for plantar defects. Foot Ankle Clin 2001;6:827.

    Article  PubMed  CAS  Google Scholar 

  52. Paragas LK, Attinger C, Blume PA. Local flaps. Clin Podiatr Med Surg 2000;17:267.

    PubMed  CAS  Google Scholar 

  53. Hallock GG. Distal lower leg local random fasciocutaneous flaps. Plast Reconstr Surg 1990;86:304.

    PubMed  CAS  Google Scholar 

  54. Sundell B. Studies in the circulation of pedicle skin flaps. Ann Chir Gynaecol Fenn 1963;133(Suppl53):1.

    Google Scholar 

  55. Blume PA, Paragas LK, Sumpio BE, Attinger CE. Single stage surgical treatment for non infected diabetic foot ulcers. Plast Reconstr Surg 2002;109:601.

    Article  PubMed  Google Scholar 

  56. Taylor GI, Corlett RJ, Caddy CM, Zelt RG. An anatomic review of the delay phenomenon: II. Clinical applications. Plast Reconstr Surg 1992;89(3):408–416.

    Article  PubMed  CAS  Google Scholar 

  57. Hidalgo DA, Shaw WW. Anatomic basis of plantar flap design. Plast Reconstr Surg 1986;78:627.

    PubMed  CAS  Google Scholar 

  58. Shaw WW, Hidalgo DA. Anatomic basis of plantar flap design: clinical applications. Plast Reconstr Surg 1986;78:637.

    Article  PubMed  CAS  Google Scholar 

  59. Colen LB, Repogle SL, Mathes SJ. The V-Y plantar flap for reconstruction of the forefoot. Plast Reconstr Surg 1988;81:220.

    PubMed  CAS  Google Scholar 

  60. Attinger CE, Ducic I, Cooper P, Zelen CM. The role of intrinsic muscle flaps of the foot for bone coverage in foot and ankle defects in diabetic and non diabetic patients. Plast Reconstr Surg 2002;110:1047.

    Article  PubMed  Google Scholar 

  61. Masqualet AC, Gilbert A. An atlas of flaps, in Limb Reconstruction, J.B. Lippincott Co., Philadelphia, 1995.

    Google Scholar 

  62. Mathes SJ, Nahai F. Reconstructive Surgery: Principles, Anatomy & Technique, Churchill Livingston Inc., New York, NY, 1997.

    Google Scholar 

  63. Hughes LA, Mahoney JL. Anatomic basis of local muscle flaps in the distal third of the leg. Plast Reconstr Surg 1993;92:1144.

    Article  PubMed  CAS  Google Scholar 

  64. Tobin GR. Hemisoleus and reversed hemi-soleus flaps. Plast Reconstr Surg 1987;79:407.

    Google Scholar 

  65. Cormack GC, Lamberty BGH: The Arterial Anatomy of Skin Flaps, 2nd ed., Churchill Livingston, London, 1994.

    Google Scholar 

  66. Yoshimura M, Imiura S, Shimamura K, et al. Peroneal flap for reconstruction of the extremity: preliminary report. Plast Reconstr Surg 1984;74:420.

    Article  Google Scholar 

  67. Dong JS, Peng YP, Zhang YY, et al. Reverse anterior tibial artery flap for reconstruction of foot donor site. Plast Reconstr Surg 2003;112:1604.

    Article  PubMed  Google Scholar 

  68. Hasegawa M, Torii S, Katoh H, et al. The distally based sural artery flap. Plast Reconstr Surg 1994;93:1012.

    Article  PubMed  CAS  Google Scholar 

  69. Baumeister SP, Spierer R, Erdman D, et al. A realistic complication analysis of 70 sural artery flaps in a multimorbid patient group. Plast Reconstr Surg 2003;112:129.

    Article  PubMed  Google Scholar 

  70. Masqualet AC, Beveridge J, Romana C. The lateral supramalleolar flap. Plast Reconstr Surg 1988;81:74.

    Google Scholar 

  71. Hallock GG. Distal lower leg local random fasciocutaneous flaps. Plast Reconstr Surg 1990;86:304.

    PubMed  CAS  Google Scholar 

  72. Ger R. The management of chronic ulcers of the dorsum of the foot by muscle transposition and free skin grafting. Br J Plast Surg 1976;29:199.

    Article  PubMed  CAS  Google Scholar 

  73. Attinger CE, Ducic I, Cooper P, Zelen CM. The role of intrinsic muscle flaps of the foot for bone coverage in foot and ankle defects in diabetic and non diabetic patients. Plast Reconstructr Surg 2002;110:1047.

    Article  Google Scholar 

  74. Attinger CE, Cooper P. Soft tissue reconstruction for calcaneal fractures or osteomyelitis. Foot Ankle Clin N Am 2001;32:135.

    CAS  Google Scholar 

  75. Leitner DW, Gordon L, Buncke HJ. The extensor digitorum brevis as a muscle island flap. Plast Reconstr Surg 1985;767:777.

    Google Scholar 

  76. Hartrampf CR Jr, Scheflan M, Bostwick J III. The flexor digitorum brevis muscle island pedicle flap, a new dimension in heel reconstruction. Plast Reconstr Surg 1980;66:264.

    Article  PubMed  Google Scholar 

  77. Morrison WA, Crabb D McC, O’Brien B McC et al. The instep of the foot as a fascio-cutaneous island flap and as a free flap for heel defects. Plast Reconstr Surg 1972;72:56–63.

    Google Scholar 

  78. Harrison DH, Morgan BDG. The instep island flap to resurface plantar defects. Br J Plast Surg 1981;34:315–318.

    Article  PubMed  CAS  Google Scholar 

  79. Masqualet AC, Romana MC. The medial pedis flap, a new fasciocutaneous flap. Plast Reconstr Surg 1990;85:765.

    Article  Google Scholar 

  80. Grabb WC, Argenta LC. The lateral calcaneal artery skin flap. Plast Reconstr Surg 1981;68:723–730.

    Article  PubMed  CAS  Google Scholar 

  81. Yan A, Park S, Icao T, Nakamura N. Reconstruction of a skin defect of the posterior heel by a lateral calcaneal flap. Plast Reconstr Surg 1985;75:642–646.

    Article  Google Scholar 

  82. McCraw JB, Furlow LT Jr. The dorsalis pedis arterialized flap: a clinical study. Plast Reconstr Surg 1975;55:177–185.

    Article  PubMed  CAS  Google Scholar 

  83. Emmet AJJ. The filleted toe flap. Br J Plast Surg 1976;29:19.

    Article  Google Scholar 

  84. Snyder GB, Edgerton MT. The principle of island neurovascular flap in the management of ulcerated anaesthetic weight-bearing areas of the lower extremity. Plast Reconstr Surg 1965;36:518.

    Article  PubMed  CAS  Google Scholar 

  85. Kaplan I. Neurovascular island flap in the treatment of trophic ulceration of the heel. Br J Plast Surg 1976;29:19.

    Article  Google Scholar 

  86. Manson P, Anthenelli RM, Im MJ, et al. The role of oxygen free radicals in ischemic tissue injury in island skin flaps. Ann Surg 1983;198:87.

    Article  PubMed  CAS  Google Scholar 

  87. Khouri RK, Cooley BC, Kunselman AR, et al. A prospective study of microvascular free-flap surgery and outcome. Plast Reconstr Surg 2000;105:2279.

    Article  Google Scholar 

  88. Buncke HJ. Microsurgery: transplantation-Replantation, Lea & Fiebiger, Philadelphia, 1991.

    Google Scholar 

  89. O’Brien BM, Morrison WA. Reconstructive Microsurgery, Churchill Livingstone, New York, NY, 1987.

    Google Scholar 

  90. Shaw WW, Hildalgo DA. Microsurgery in Trauma, Futura Publishing Company, Mount Kisco, New York, 1987.

    Google Scholar 

  91. Strauch B, Han-Liang Y. Atlas of Microvascular Surgery: Anatomy and Operative Procedures, Thieme, New York, 1993.

    Google Scholar 

  92. Mathes SJ, Nahai F. Reconstructive Surgery: Principles, Anatomy, & Technique, Churchill Livingston, New York, 1997.

    Google Scholar 

  93. Serafin D. Atlas of Microsurgical Composite Tissue Transplantation, W.B Saunders, Philadelphia, 1996.

    Google Scholar 

  94. Goldberg JA, Adkins P, Tsai T. Microvascular reconstruction of the foot: weight bearing patterns, gait analysis, and long term follow up. Plast Reconstr Surg 1992;92:904.

    Article  Google Scholar 

  95. May JW, Rohrich RJ. Foot reconstruction using free microvascular muscle flaps with skin grafts. Clin Plast Surg 1986;13:681.

    PubMed  Google Scholar 

  96. Mann RA, Poppen NK, O’Konski M. Amputation of the great toe: a clinical and biomechanical study. Clin Ortho Relat Res 1988;226:192.

    Google Scholar 

  97. Armstrong DG, Stacpoole-Shea S, Nguyen H, Harkless LB. Lengthening of the Achilles tendon in diabetic patients who are at high risk for ulceration of the foot. J Bone Joint Surg 1999;81-A:535–538.

    Google Scholar 

  98. Lin SS, Lee TH, Wapner KL. Plantar forefoot ulceration with equinus deformity of the ankle in diabetic patients: the effect of tendo-Achilles lengthening and total contact casting. Orthop 1996;19:465–475.

    CAS  Google Scholar 

  99. Chrzan JS, Giurini JM, Hurchik JM. A biomechanical model for the transmetatarsal amputation. JAPMA 1993;83:82.

    CAS  Google Scholar 

  100. Barry DC, Sabacinski KA, Habershaw GM, et al. Tendo achillis procedures for chronic ulcerations in diabetic patients with transmetatarsal amputations. JAPMA 1993;83:97.

    Google Scholar 

  101. Bowker JH. Partial foot amputations and disarticulations. Foot Ankle 1997;2:153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Attinger, C.E. (2006). Soft Tissue Reconstructive Options for the Ulcerated or Gangrenous Diabetic Foot. In: Veves, A., Giurini, J.M., Logerfo, F.W. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-075-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-075-1_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-610-8

  • Online ISBN: 978-1-59745-075-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics