Skip to main content

Preparation of the Wound Bed of the Diabetic Foot Ulcer

  • Chapter
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

  • 1823 Accesses

Abstract

Over the last few years, substantial advances have been made in our understanding of diabetic foot ulcers, the importance of thorough surgical debridement, and how this standard therapeutic modality impacts on wound bed preparation. Importantly, wound bed preparation is revolutionizing the way we approach nonhealing or difficult to heal wounds. Much of what we do clinically, from elimination of bacterial burden, to debridement, and to the use of new technologies to heal diabetic foot ulcers, can now be seen as helping wound bed preparation and facilitating the process of healing. From a therapeutic standpoint, at least in the United States, large multicenter clinical trials have led to the regulatory approval of topically applied platelet-derived growth factor (PDGF)-BB (Regranex, Ortho McNeill, NJ) and bioengineered skin (Apligraf, Organogenesis, Canton, MA; Dermagraft, Smith & Nephew, Largo, FL), and have dramatically increased the number of available therapeutic options. However, not to be forgotten are advances that these and other clinical trials have brought to the standard of care for treating neuropathic diabetic foot ulcers. Indeed, these improvements in standards of care for diabetic foot ulcers have raised the bar for proving the effectiveness of new treatments. Stated differently, it has become harder to prove the effectiveness of new therapeutic agents. Thus, from now on we may be looking for “quantum”; jumps in therapeutic efficacy in the treatment of diabetic foot ulcers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group. J Vasc Surg 1995;21(1):71–78 (Discussion 79-81).

    Article  PubMed  CAS  Google Scholar 

  2. Steed DL, et al. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. Diabetic Ulcer Study Group. J Am Coll Surg 1996;183(1):61–64.

    PubMed  CAS  Google Scholar 

  3. Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen 2000;8(5):347–352.

    Article  PubMed  CAS  Google Scholar 

  4. Falanga V. Wound bed preparation: future approaches. Ostomy Wound Manage 2003;49(5A Suppl):30–33.

    PubMed  Google Scholar 

  5. Saap LJ, Falanga V. Debridement performance index and its correlation with complete closure of diabetic foot ulcers. Wound Repair Regen 2002;10(6):354–359.

    Article  PubMed  Google Scholar 

  6. Jeffcoate WJ, Price P, Harding KG. Wound healing and treatments for people with diabetic foot ulcers. Diabetes Metab Res Rev 2004;20(Suppl 1):S78–S89.

    Article  PubMed  Google Scholar 

  7. Boulton AJ, Kirsner RS, Vileikyte L. Clinical practice. Neuropathic diabetic foot ulcers. N Engl J Med 2004;351(1):48–55.

    Article  PubMed  CAS  Google Scholar 

  8. LoGerfo FW, Coffman JD. Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. N Engl J Med 1984;311(25):1615–1619.

    Article  PubMed  CAS  Google Scholar 

  9. Pecoraro RE, et al. Chronology and determinants of tissue repair in diabetic lower-extremity ulcers. Diabetes 1991;40(10):1305–1313.

    Article  PubMed  CAS  Google Scholar 

  10. Armstrong DG, et al. Off-loading the diabetic foot wound: a randomized clinical trial. Diabetes Care 2001;24(6):1019–1022.

    Article  PubMed  CAS  Google Scholar 

  11. Robson MC, et al. Maintenance of wound bacterial balance. Am J Surg 1999;178(5):399–402.

    Article  PubMed  CAS  Google Scholar 

  12. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis 2004;17(2):91–96.

    Article  PubMed  Google Scholar 

  13. Falanga V, Eaglstein WH. The “trap”; hypothesis of venous ulceration. Lancet 1993;341(8851):1006–1008.

    Article  PubMed  CAS  Google Scholar 

  14. Higley HR, et al. Extravasation of macromolecules and possible trapping of transforming growth factor-beta in venous ulceration. Br J Dermatol 1995;132(1):79–85.

    Article  PubMed  CAS  Google Scholar 

  15. Falanga V. Occlusive wound dressings. Why, when, which?. Arch Dermatol 1988;124(6):872–877.

    Article  PubMed  CAS  Google Scholar 

  16. Helfman T, Ovington L, Falanga V. Occlusive dressings and wound healing. Clin Dermatol 1994;12(1):121–127.

    Article  PubMed  CAS  Google Scholar 

  17. Ovington LG The evolution of wound management: ancient origins and advances of the past 20 years. Home Healthc Nurse 2002;20(10):652–656.

    Article  Google Scholar 

  18. Hutchinson JJ. Infection under occlusion. Ostomy Wound Manage 1994;40(3):28–30, 32, 33.

    PubMed  CAS  Google Scholar 

  19. Hutchinson JJ, Lawrence JC. Wound infection under occlusive dressings. J Hosp Infect 1991;17(2):83–94.

    Article  PubMed  CAS  Google Scholar 

  20. Smith DJ, Jr, et al. Microbiology and healing of the occluded skin-graft donor site. Plast Reconstr Surg 1993;91(6):1094–1097.

    Article  PubMed  Google Scholar 

  21. Katz MH, et al. Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth. J Am Acad Dermatol 1991;25(6 Pt 1):1054–1058.

    Article  PubMed  CAS  Google Scholar 

  22. Drinkwater SL, et al. Effect of venous ulcer exudates on angiogenesis in vitro. Br J Surg 2002;89(6):709–713.

    Article  PubMed  CAS  Google Scholar 

  23. Schaffer MR, et al. Stimulation of fibroblast proliferation and matrix contraction by wound fluid. Int J Biochem Cell Biol 1997;29(1):231–239.

    Article  PubMed  CAS  Google Scholar 

  24. Falanga V, et al. Workshop on the pathogenesis of chronic wounds. J Invest Dermatol 1994;102(1):125–127.

    Article  PubMed  CAS  Google Scholar 

  25. Wysocki AB, Staiano-Coico L, Grinnell F Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol 1993;101(1):64–68.

    Article  PubMed  CAS  Google Scholar 

  26. Trengove NJ, Bielefeldt-Ohmann H, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen 2000;8(1):13–25.

    Article  PubMed  CAS  Google Scholar 

  27. Trengove NJ, et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 1999;7(6):442–452.

    Article  PubMed  CAS  Google Scholar 

  28. Madlener M, Parks WC, Werner S. Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair. Exp Cell Res 1998;242(1):201–210.

    Article  PubMed  CAS  Google Scholar 

  29. Pilcher BK, et al. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 1997;137(6):1445–1457.

    Article  PubMed  CAS  Google Scholar 

  30. Weckroth M, et al. Matrix metalloproteinases, gelatinase and collagenase, in chronic leg ulcers. J Invest Dermatol 1996;106(5):1119–1124.

    Article  PubMed  CAS  Google Scholar 

  31. Nwomeh BC, et al. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res 1999;81(2):189–195.

    Article  PubMed  CAS  Google Scholar 

  32. Fife CE, et al. The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1,144 patients. Wound Repair Regen 2002;10(4):198–207.

    Article  PubMed  Google Scholar 

  33. Falanga V, Kirsner RS. Low oxygen stimulates proliferation of fibroblasts seeded as single cells. J Cell Physiol 1993;154(3):506–510.

    Article  PubMed  CAS  Google Scholar 

  34. Kourembanas S, Hannan RL, Faller DV. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 1990;86(2):670–674.

    PubMed  CAS  Google Scholar 

  35. Kourembanas S, et al. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest 1991;88(3):1054–1057.

    Article  PubMed  CAS  Google Scholar 

  36. Helfman T, Falanga V. Gene expression in low oxygen tension. Am J Med Sci 1993;306(1):37–41.

    Article  PubMed  CAS  Google Scholar 

  37. Sheikh AY, et al. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg 2000;135(11):1293–1297.

    Article  PubMed  CAS  Google Scholar 

  38. Loot MA, et al. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol 2002;81(3):153–160.

    Article  PubMed  Google Scholar 

  39. Loots MA, et al. Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res 1999;291(2–3):93–99.

    Article  PubMed  CAS  Google Scholar 

  40. Loots MA, et al. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 1998;111(5):850–857.

    Article  PubMed  CAS  Google Scholar 

  41. Bruce SA, Deamond SF. Longitudinal study of in vivo wound repair and in vitro cellular senescence of dermal fibroblasts. Exp Gerontol 1991;26(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  42. Hehenberger K, et al. Inhibited proliferation of fibroblasts derived from chronic diabetic wounds and normal dermal fibroblasts treated with high glucose is associated with increased formation of l-lactate. Wound Repair Regen 1998;6(2):135–141.

    Article  PubMed  CAS  Google Scholar 

  43. Hehenberger K, et al. Fibroblasts derived from human chronic diabetic wounds have a decreased proliferation rate, which is recovered by the addition of heparin. J Dermatol Sci 1998;16(2):144–151.

    Article  PubMed  CAS  Google Scholar 

  44. Mendez MV, et al. Fibroblasts cultured from distal lower extremities in patients with venous reflux display cellular characteristics of senescence. J Vasc Surg 1998;28(6):1040–1050.

    Article  PubMed  CAS  Google Scholar 

  45. Stanley A, Osler T, Senescence and the healing rates of venous ulcers. J Vasc Surg 2001;33(6):1206–1211.

    Article  PubMed  CAS  Google Scholar 

  46. Agren MS, et al. Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers is ulcer-age dependent. J Invest Dermatol 1999;112(4):463–469.

    Article  PubMed  CAS  Google Scholar 

  47. Hasan A, et al. Dermal fibroblasts from venous ulcers are unresponsive to the action of transforming growth factor-beta 1. J Dermatol Sci 1997;16(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  48. Kim BC, et al. Fibroblasts from chronic wounds show altered TGF-beta-signaling and decreased TGF-beta type II receptor expression. J Cell Physiol 2003;195(3):331–336.

    Article  PubMed  CAS  Google Scholar 

  49. Falanga V, et al. Topical use of human recombinant epidermal growth factor (h-EGF) in venous ulcers. J Dermatol Surg Oncol 1992;18(7):604–606.

    PubMed  CAS  Google Scholar 

  50. Robson MC, et al. The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores. Ann Surg 1992;216(4):401–406 (Discussion 406-408).

    Article  PubMed  CAS  Google Scholar 

  51. Robson MC, et al. Platelet-derived growth factor BB for the treatment of chronic pressure ulcers. Lancet 1992;339(8784):23–25.

    Article  PubMed  CAS  Google Scholar 

  52. Smiell JM, et al. Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 1999;7(5):335–346.

    Article  PubMed  CAS  Google Scholar 

  53. Gallico GG, 3rd. Biologic skin substitutes. Clin Plast Surg 1990;17(3):519–526.

    PubMed  Google Scholar 

  54. Phillips TJ, Gilchrest BA. Clinical applications of cultured epithelium. Epithelial Cell Biol 1992;1(1):39–46.

    PubMed  CAS  Google Scholar 

  55. Bell E, et al. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 1981;211(4486):1052–1054.

    Article  PubMed  CAS  Google Scholar 

  56. Sabolinski ML, et al. Cultured skin as a ‘smart material’ for healing wounds: experience in venous ulcers. Biomaterials 1996;17(3):311–320.

    Article  PubMed  CAS  Google Scholar 

  57. Boyce ST. Design principles for composition and performance of cultured skin substitutes. Burns 2001;27(5):523–533.

    Article  PubMed  CAS  Google Scholar 

  58. Falanga V, et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol 1998;134(3):293–300.

    Article  PubMed  CAS  Google Scholar 

  59. Hansbrough JF, et al. Clinical trials of a biosynthetic temporary skin replacement, Dermagraft-transitional covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 1997;18(1 Pt 1):43–51.

    Article  PubMed  CAS  Google Scholar 

  60. Marston WA, et al. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 2003;26(6):1701–1705.

    Article  PubMed  Google Scholar 

  61. Veves A, et al. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical trial. Diabetes Care 2001;24(2):290–295.

    Article  PubMed  CAS  Google Scholar 

  62. Falanga V, et al. Wounding of bioengineered skin: cellular and molecular aspects after injury. J Invest Dermatol 2002;119(3):653–660.

    Article  PubMed  CAS  Google Scholar 

  63. Badiavas EV, Falanga V. Gene therapy. J Dermatol 2001;28(4):175–192.

    PubMed  CAS  Google Scholar 

  64. Comerota AJ, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 2002;35(5):930–936.

    Article  PubMed  Google Scholar 

  65. Badiavas EV, et al. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003;196(2):245–250.

    Article  PubMed  CAS  Google Scholar 

  66. Quesenberry PJ, et al. Stem cell plasticity: an overview. Blood Cells Mol Dis 2004;32(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  67. Quesenberry PJ, et al. Developmental biology: Ignoratio elenchi: red herrings in stem cell research. Science 2005;308(5725):1121, 1122.

    Article  PubMed  CAS  Google Scholar 

  68. Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 2003;139(4):510–516.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Falanga, V. (2006). Preparation of the Wound Bed of the Diabetic Foot Ulcer. In: Veves, A., Giurini, J.M., Logerfo, F.W. (eds) The Diabetic Foot. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-075-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-075-1_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-610-8

  • Online ISBN: 978-1-59745-075-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics