Skip to main content

Alu Elements

  • Chapter
Genomic Disorders

Abstract

Alu elements represent one of the most successful mobile elements found in any genome. They have reached a copy number in excess of one million copies, making up more than 10% of the human genome. The level of amplification required to reach this high copy number has created an enormous number of insertion mutations resulting in human disease and genome evolution. They also add extensive diversity to the genome by introducing alternative splicing and editing to a wide range of RNA transcripts. In addition, after insertion Alu elements contribute to a high level of genetic instability through recombination. This instability contributes to a significant number of germ-line mutations and may be an even bigger factor in cancer and/or aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. International Human Genome Sequencing Consortium. Nature 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  2. Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab 1999;67:183–193.

    Article  PubMed  CAS  Google Scholar 

  3. Li X, Scaringe WA, Hill KA, Roberts S, et al. Frequency of recent retrotransposition events in the human factor IX gene. Hum Mutat 2001;17:511–519.

    Article  PubMed  CAS  Google Scholar 

  4. Hagan CR, Sheffield RF, Rudin CM. Human Alu element retrotransposition induced by genotoxic stress. Nat Genet 2003;35:219–220.

    Article  PubMed  CAS  Google Scholar 

  5. Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 2003;35:41–48.

    Article  PubMed  CAS  Google Scholar 

  6. Roy-Engel AM, Salem AH, Oyeniran OO, et al. Active Alu element “A-tails” size does matter. Genome Res 2002;12:1333–1344.

    Article  PubMed  CAS  Google Scholar 

  7. Xing J, Salem AH, Hedges DJ, et al. Comprehensive analysis of two Alu Yd subfamilies. J Mol Evol 2003;57:S76–S89.

    Article  PubMed  CAS  Google Scholar 

  8. Deininger P, Batzer MA. Evolution of retroposons. In: Evolutionary Biology (Heckht MK, et al., eds. New York, NY: Plenum Publishing, 1993; pp. 157–196.

    Google Scholar 

  9. Salem AH, Ray DA, Xing J, et al. Alu elements and hominidphylogenetics. Proc Natl Acad Sci USA 2003; 100:12,787–12,791.

    Article  PubMed  Google Scholar 

  10. Chesnokov I, Schmid CW. Flanking sequences of an Alu source stimulate transcription in vitro by interacting with sequence-specific transcription factors. J Mol Evol 1996;42:30–36.

    Article  PubMed  CAS  Google Scholar 

  11. Roy AM, West NC, Rao A, et al. Upstream flanking sequences and transcription of SINEs. J Mol Biol 2000;302:17–25.

    Article  PubMed  CAS  Google Scholar 

  12. Sinnett D, Richer C, Deragon JM, Labuda D. Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J Mol Biol 1992;226:689–706.

    Article  PubMed  CAS  Google Scholar 

  13. Brookfield JF. Selection on Alu sequences? Curr Biol 2001;11:R900–R901.

    Article  PubMed  CAS  Google Scholar 

  14. Deininger PL, Batzer MA. Mammalian retroelements. Genome Res 2002;12:1455–1465.

    Article  PubMed  CAS  Google Scholar 

  15. Makalowski W, Mitchell GA, Labuda D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet 1994;10:188–193.

    Article  PubMed  CAS  Google Scholar 

  16. Britten RJ. Mobile elements inserted in the distant past have taken on important functions. Gene 1997;205:177–182.

    Article  PubMed  CAS  Google Scholar 

  17. Gebow D, Miselis N, Liber HL. Homologous and nonhomologous recombination resulting in deletion: effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol Cell Biol 2000;20:4028–4035.

    Article  PubMed  CAS  Google Scholar 

  18. Stenger JE, Lobachev KS, Gordenin D, Darden TA, Jurka J, Resnick MA. Biased distribution of inverted and direct alus in the human genome: implications for insertion, exclusion, and genome stability. Genome Res 2001;11:12–27.

    Article  PubMed  CAS  Google Scholar 

  19. Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA. Inverted Alu repeats unstable in yeast are excluded from the human genome. Embo J 2000; 19:3822–3830.

    Article  PubMed  CAS  Google Scholar 

  20. Chuzhanova N, Abeysinghe SS, Krawczak M, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 2003;22:245–251.

    Article  PubMed  CAS  Google Scholar 

  21. Puget N, Sinilnikova OM, Stoppa-Lyonnet D, et al. An Alu-mediated 6-kb duplication in the BRCA1 gene: a new founder mutation? Am J Hum Genet 1999;64:300–302.

    Article  PubMed  CAS  Google Scholar 

  22. Puget N, Torchard D, Serova-Sinilnikova OM, et al. A 1-kb Alu-mediated germ-line deletion removing BRCA1 exon 17. Cancer Research 1997;57:828–831.

    PubMed  CAS  Google Scholar 

  23. Rohlfs EM, Chung CH, Yang Q, et al. In-frame deletions of BRCA1 may define critical functional domains. Hum Genet 2000; 107:385–390.

    Article  PubMed  CAS  Google Scholar 

  24. Rohlfs EM, Puget N, Graham ML, et al. An Alu-mediated 7.1 kb deletion of BRCA1 exons 8 and 9 in breast and ovarian cancer families that results in alternative splicing of exon 10. Genes Chromosomes Cancer 2000;28:300–307.

    Article  PubMed  CAS  Google Scholar 

  25. Montagna M, Santacatterina M, Torri A, et al. Identification of a 3 kb Alu-mediated BRCA1 gene rearrangement in two breast/ovarian cancer families. Oncogene 1999;18:4160–4165.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y, Friedl W, Lamberti C, et al. Hereditary nonpolyposis colorectal cancer: frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int J Cancer 2003; 103:636–641.

    Article  PubMed  CAS  Google Scholar 

  27. Thiffault I, Hamel N, Pal T, et al. Germline truncating mutations in both MSH2 and BRC A2 in a single kindred. Br J Cancer 2004;90:483–491.

    Article  PubMed  CAS  Google Scholar 

  28. Plaschke J, Ruschoff J, Schackert HK. Genomic rearrangements of hMSH6 contribute to the genetic predisposition in suspected hereditary non-polyposis colorectal cancer syndrome. J Med Genet 2003;40:597–600.

    Article  PubMed  CAS  Google Scholar 

  29. Strout MP, Marcucci G, Bloomfield CD, Caligiuri MA. The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc Natl Acad Sci USA 1998;95:2390–2395.

    Article  PubMed  CAS  Google Scholar 

  30. Kolomietz E, Meyn MS, Pandita A, Squire JA. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 2002;35:97–112.

    Article  PubMed  CAS  Google Scholar 

  31. Callen E, Tischkowitz MD, Creus A, et al. Quantitative PCR analysis reveals a high incidence of large intragenic deletions in the FANC A gene in Spanish Fanconi anemia patients. Cytogenet Genome Res 2004; 104:341–345.

    Article  PubMed  CAS  Google Scholar 

  32. Wei, Y., Sun, M., Nilsson, G., et al. Characteristic sequence motifs located at the genomic breakpoints of the translocation t(X;18) in synovial sarcomas. Oncogene 2003;22:2215–2222.

    Article  PubMed  CAS  Google Scholar 

  33. Rudiger NS, Gregersen N, Kielland-Brandt MC. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res 1995;23:256–260.

    Article  PubMed  CAS  Google Scholar 

  34. Knebelmann, B., Forestier, L., Drouot, L., et al. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet 1995;4:675–679.

    Article  PubMed  CAS  Google Scholar 

  35. Mitchell, G. A., Labuda, D., Fontaine, G., et al. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc Natl Acad Sci USA 1991;88:815–819.

    Article  PubMed  CAS  Google Scholar 

  36. Sorek R, Shamir R, Ast G. How prevalent is functional alternative splicing in the human genome? Trends Genet 2004;20:68–71.

    Article  PubMed  CAS  Google Scholar 

  37. Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 2003;300:1288–1291.

    Article  PubMed  CAS  Google Scholar 

  38. Kreahling J, Graveley BR. The origins and implications of Aluternative splicing. Trends Genet 2004;20:1–4.

    Article  PubMed  CAS  Google Scholar 

  39. Arcot S, Wang Z, Weber J, Deininger P, Batzer M. Alu repeats: a source for the genesis of primate microsatellites. Genomics 1995;29:136–144.

    Article  PubMed  CAS  Google Scholar 

  40. Montermini L, Andermann E, Labuda M, et al. The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum Mol Genet 1997;6:1261–1266.

    Article  PubMed  CAS  Google Scholar 

  41. Ohshima K, Montermini L, Wells RD, Pandolfo M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 1998;273:14,588–14,595.

    Article  PubMed  CAS  Google Scholar 

  42. Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 1998;62:111–121.

    Article  PubMed  CAS  Google Scholar 

  43. Patel PI, Isaya G. Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency. Am J Hum Genet 2001;69:15–24.

    Article  PubMed  CAS  Google Scholar 

  44. Roy-Engel AM, El-Sawy M, Farooq L, et al. Human retroelements may introduce intragenic polyadenylation sites. Cytogenet Genome Res 2004, in press.

    Google Scholar 

  45. Hayakawa T, Satta Y, Gagneux P, Varki A, Takahata N. Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci USA 2001;98:11,399–11,404.

    Article  PubMed  CAS  Google Scholar 

  46. Challem JJ, Taylor EW. Retro viruses, ascorbate, and mutations, in the evolution of Homo sapiens. Free Radic Biol Med 1998;25:130–132.

    Article  PubMed  CAS  Google Scholar 

  47. Bailey JA, Liu G, Eichler EE. An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 2003;73:823–834.

    Article  PubMed  CAS  Google Scholar 

  48. Babcock M, Pavlicek A, Spiteri E, et al. Shuffling of genes within low-copy repeats on 22q1 1 (LCR22) by Alu-mediated recombination events during evolution. Genome Res 2003;13:2519–2532.

    Article  PubMed  CAS  Google Scholar 

  49. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 2001;11:1005–1017.

    Article  PubMed  CAS  Google Scholar 

  50. Britten RJ. DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci USA 1996;93:9374–9377.

    Article  PubMed  CAS  Google Scholar 

  51. Norris J, Fan D, Aleman C, et al. Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers. J Biol Chem 1995;270:22,777–22,782.

    Article  PubMed  CAS  Google Scholar 

  52. Vansant G, Reynolds WF. The consensus sequence of amajor Alu subfamily contains a functional retinoic acid response element. Proc Natl Acad Sci USA 1995;92:8229–8233.

    Article  PubMed  CAS  Google Scholar 

  53. Thorey IS, Cecena G, Reynolds W, Oshima RG. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice. Mol Cell Biol 1993; 13:6742–6751.

    PubMed  CAS  Google Scholar 

  54. Rubin CM, Kimura RH, Schmid CW. Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res 2002;30:3253–3261.

    Article  PubMed  CAS  Google Scholar 

  55. Panning B, Smiley JR. Activation of expression of multiple subfamilies of human Alu elements by adeno virus type 5 and herpes simplex virus type 1. J Mol Biol 1995;248:513–524.

    Article  PubMed  CAS  Google Scholar 

  56. Carey MF, Singh K, Botchan M, Cozzarelli NR. Induction of specific transcription by RNA polymerase III in transformed Cells. Mol Cell Biol 1989;6:3068–3076.

    Google Scholar 

  57. Chu WM, Wang Z, Roeder RG, Schmid CW. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J Biol Chem 1997;272:14,755–14,761.

    Article  PubMed  CAS  Google Scholar 

  58. Rudin CM, Thompson CB. Transcriptional activation of short interspersed elements by DN A-damaging agents. Genes Chromosomes Cancer 2001;30:64–71.

    Article  PubMed  CAS  Google Scholar 

  59. Li TH, Schmid CW. Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 2001;276:135–141.

    Article  PubMed  CAS  Google Scholar 

  60. Levanon EY, Eisenberg E, Yelin R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 2004;22:1001–1005.

    Article  PubMed  CAS  Google Scholar 

  61. Vidaud D, Vidaud M, Bahnak BR, et al. Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene. Eur J Hum Genet 1993;1:30–36.

    PubMed  CAS  Google Scholar 

  62. Wulff K, Gazda H, Schroder W, Robicka-Milewska R, Herrmann FH. Identification of a novel large F9 gene mutation-an insertion of an Alu repeated DNA element in exon e of the factor 9 gene. Hum Mutat 2000; 15:299.

    Article  PubMed  CAS  Google Scholar 

  63. Sukarova E, Dimovski AJ, Tchacarova P, Petkov GH, Efremov GD. An Alu insert as the cause of a severe form of hemophilia A Acta Haematol 2001;106:126–129.

    Article  CAS  Google Scholar 

  64. Ganguly A, Dunbar T, Chen P, Godmilow L, Ganguly T. Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A Hum Genet 2003;113:348–352.

    Article  CAS  Google Scholar 

  65. Claverie-Martin F, Gonzalez-Acosta H, Flores C, Anton-Gamero M, Garcia-Nieto V. De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent’s disease. Hum Genet 2003;113:480–485.

    Article  PubMed  CAS  Google Scholar 

  66. Thakker RV. Molecular pathology of renal chloride channels in Dent’s disease and Bartter’s syndrome. Exp Nephrol 2000;8:351–360.

    Article  PubMed  CAS  Google Scholar 

  67. Lester T, McMahon C, VanRegemorter N, Jones A, Genet S. X-linked immunodeficiency caused by insertion of Alu repeat sequences. J Med Gen Suppl 1997;34:S81.

    Google Scholar 

  68. Zhang Y, Dipple KM, Vilain E, et al. AluY insertion (IVS4-52ins316alu) in the glycerol kinase gene from an individual with benign glycerol kinase deficiency. Hum Mutat 2000;15:316–323.

    Article  PubMed  CAS  Google Scholar 

  69. Muratani K, Hada T, Yamamoto Y, et al. Inactivation of the cholinesterase gene by Alu insertion: Possible mechanism for human gene transposition. Proc Natl Acad Sci USA 1991;88:11,315–11,319.

    Article  PubMed  CAS  Google Scholar 

  70. Janicic N, Pausova Z, Cole DE, Hendy GN. Insertion of an Alu sequence in the Ca(2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am J Hum Genet 1995;56:880–886.

    PubMed  CAS  Google Scholar 

  71. Economou-Pachnis A, Tsichlis PN. Insertion of an Alu SINE in the human homologue of the Mlvi-2 locus. Nucleic Acids Res 1985;13:8379–8387.

    Article  PubMed  CAS  Google Scholar 

  72. Halling KC, Lazzaro CR, Honchel R, et al. Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene. Hum Hered 1999;49:97–102.

    Article  PubMed  CAS  Google Scholar 

  73. Abdelhak S, Kalatzis V, Heilig R, et al. Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet 1997;6:2247–2255.

    Article  PubMed  CAS  Google Scholar 

  74. Oldridge M, Zackai EH, McDonald-McGinn DM, et al. De novo Alu-element insertions in FGFR2 identify a distinct pathological basis for apert syndrome. Am J Hum Genet 1999;64:446–461.

    Article  PubMed  CAS  Google Scholar 

  75. Tighe PJ, Stevens SE, Dempsey S, Le Deist F, Rieux-Laucat F, Edgar JD. Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immun 2002;3:S66–S70.

    Article  PubMed  CAS  Google Scholar 

  76. Stoppa-Lyonnet D, Duponchel C, Meo T,et al. Recombinational biases in the rearranged C1-inhibitor genes of hereditary angioedema patients. Am J Hum Genet 1991;49:1055–1062.

    PubMed  CAS  Google Scholar 

  77. Mustajoki S, Ahola H, Mustajoki P, Kauppinen R. Insertion of Alu element responsible for acute intermittent porphyria. Hum Mutat 1999;13:431–438.

    Article  PubMed  CAS  Google Scholar 

  78. Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y. Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 1996;13:245–247.

    Article  PubMed  CAS  Google Scholar 

  79. Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS. A de novo Alu insertion results in neurofibromatosis type 1. Nature 1991;353:864–866.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Deininger, P. (2006). Alu Elements. In: Lupski, J.R., Stankiewicz, P. (eds) Genomic Disorders. Humana Press. https://doi.org/10.1007/978-1-59745-039-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-039-3_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-559-0

  • Online ISBN: 978-1-59745-039-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics