Skip to main content

Advances in RIP-Chip Analysis: RNA-Binding Protein Immunoprecipitation-Microarray Profiling

  • Protocol
Post-Transcriptional Gene Regulation

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 419))

Summary

In eukaryotic organisms, gene regulatory networks require an additional level of coordination that links transcriptional and post-transcriptional processes. Messenger RNAs have traditionally been viewed as passive molecules in the pathway from transcription to translation. However, it is now clear that RNA-binding proteins (RBPs) play a major role in regulating multiple mRNAs to facilitate gene expression patterns. On this basis, post-transcriptional and transcriptional gene expression networks appear to be very analogous. Our previous research focused on targeting RBPs to develop a better understanding of post-transcriptional gene-expression processing and the regulation of mRNA networks. We developed technologies for purifying endogenously formed RBP–mRNA complexes from cellular extracts and identifying the associated messages using genome-scale, microarray technology, a method called ribonomics or RNA-binding protein immunoprecipitation-microarray (Chip) profiling or RIP-Chip. The use of the RIP-Chip methods has provided great insight into the infrastructure of coordinated eukaryotic post-transcriptional gene expression, insights which could not have been obtained using traditional RNA expression profiling approaches (1). This chapter describes the most current RIP-Chip techniques as we presently practice them. We also discuss some of the informatic aspects that are unique to analyzing RIP-Chip data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Keene JD, Tenenbaum SA. Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell 2002, 9(6):1161–1167.

    Article  CAS  PubMed  Google Scholar 

  2. Tenenbaum SA, Carson CC, Lager PJ, Keene JD. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 2000, 97(26):14085–14090.

    Article  CAS  PubMed  Google Scholar 

  3. Tenenbaum SA, Lager PJ, Carson CC, Keene JD. Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 2002, 26(2):191–198.

    Article  CAS  PubMed  Google Scholar 

  4. Tenenbaum SA, Carson CC, Atasoy U, Keene JD. Genome-wide regulatory analysis using en masse nuclear run-ons and ribonomic profiling with autoimmune sera. Gene 2003, 317(1–2):79–87.

    Article  CAS  PubMed  Google Scholar 

  5. Penalva LO, Tenenbaum SA, Keene JD. Gene expression analysis of messenger RNP complexes. Methods Mol Biol 2004, 257:125–134.

    CAS  PubMed  Google Scholar 

  6. Katou Y, Kaneshiro K, Aburatani H, Shirahige K. Genomic approach for the understanding of dynamic aspect of chromosome behavior. Methods Enzymol 2006, 409:389–410.

    Article  CAS  PubMed  Google Scholar 

  7. Tsai HK, Huang GT, Chou MY, Lu HH, Li WH. Method for identifying transcription factor binding sites in yeast. Bioinformatics 2006, 22(14):1675–1681.

    Article  CAS  PubMed  Google Scholar 

  8. Wu J, Smith LT, Plass C, Huang TH. ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 2006, 66(14):6899–6902.

    Article  CAS  PubMed  Google Scholar 

  9. Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 2001, 107(4):477–487.

    Article  CAS  PubMed  Google Scholar 

  10. Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 2001, 107(4):489–499.

    Article  CAS  PubMed  Google Scholar 

  11. Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 2002, 13(4):1338–1351.

    Article  CAS  PubMed  Google Scholar 

  12. Lopez de Silanes I, Fan J, Yang X, Zonderman AB, Potapova O, Pizer ES, Gorospe M: Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene 2003, 22(46):7146–7154.

    Article  CAS  PubMed  Google Scholar 

  13. Lopez de Silanes I, Zhan M, Lal A, Yang X, Gorospe M. Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 2004, 101(9):2987–2992.

    Article  PubMed  Google Scholar 

  14. Gerber AP, Herschlag D, Brown PO: Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2004, 2(3):E79.

    Article  PubMed  Google Scholar 

  15. Gerber AP, Luschnig S, Krasnow MA, Brown PO, Herschlag D. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA 2006, 103(12):4487–4492.

    Article  CAS  PubMed  Google Scholar 

  16. Hieronymus H, Silver PA. Genome-wide analysis of RNA-protein interactions illustrates specificity of the mRNA export machinery. Nat Genet 2003, 33(2): 155–161.

    Article  Google Scholar 

  17. Inada M, Guthrie C. Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomyces cerevisiae reveals association with coding and noncoding RNAs. Proc Natl Acad Sci USA 2004, 101(2):434–439.

    Article  CAS  PubMed  Google Scholar 

  18. Intine RV, Tenenbaum SA, Sakulich AL, Keene JD, Maraia RJ. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol Cell 2003, 12(5):1301–1307.

    Article  CAS  PubMed  Google Scholar 

  19. Kim Guisbert K, Duncan K, Li H, Guthrie C. Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA 2005, 11(4):383–393.

    Article  PubMed  Google Scholar 

  20. Mazan-Mamczarz K, Galban S, Lopez de Silanes I, Martindale JL, Atasoy U, Keene JD, Gorospe M. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA 2003, 100(14):8354–8359.

    Article  CAS  PubMed  Google Scholar 

  21. Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco MA. Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods 2002, 26(2):182–190.

    Article  CAS  PubMed  Google Scholar 

  22. Quattrone A, Pascale A, Nogues X, Zhao W, Gusev P, Pacini A, Alkon DL. Posttranscriptional regulation of gene expression in learning by the neuronal ELAV-like mRNA-stabilizing proteins. Proc Natl Acad Sci USA 2001, 98(20):11668–11673.

    Article  CAS  PubMed  Google Scholar 

  23. Townley-Tilson WH, Pendergrass SA, Marzluff WF, Whitfield ML. Genome-wide analysis of mRNAs bound to the histone stem-loop binding protein. RNA 2006 12(10):1853–67.

    Article  CAS  PubMed  Google Scholar 

  24. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003, 302(5648):1212–1215.

    Article  CAS  PubMed  Google Scholar 

  25. Ule J, Ule A, Spencer J, Williams A, Hu JS, Cline M, Wang H, Clark T, Fraser C, Ruggiu M et al. Nova regulates brain-specific splicing to shape the synapse. Nat Genet 2005, 37(8):844–852.

    Article  CAS  PubMed  Google Scholar 

  26. Whitfield ML, Kaygun H, Erkmann JA, Townley-Tilson WH, Dominski Z, Marzluff WF. SLBP is associated with histone mRNA on polyribosomes as a component of the histone mRNP. Nucleic Acids Res 2004, 32(16):4833–4842.

    Article  CAS  PubMed  Google Scholar 

  27. Mili S, Steitz JA. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 2004, 10(11):1692–1694.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jack Keene, Luiz Penalva, Aparna Ranganathan, and the rest of the Tenenbaum laboratory members for helpful input. This research was supported by National Institute of Health/National Human Genome Research Institute grant R21HG003679.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baroni, T.E., Chittur, S.V., George, A.D., Tenenbaum, S.A. (2008). Advances in RIP-Chip Analysis: RNA-Binding Protein Immunoprecipitation-Microarray Profiling . In: Wilusz, J. (eds) Post-Transcriptional Gene Regulation. Methods In Molecular Biology™, vol 419. Humana Press. https://doi.org/10.1007/978-1-59745-033-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-033-1_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-783-9

  • Online ISBN: 978-1-59745-033-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics