Skip to main content

Detecting the “O-GlcNAcome”; Detection, Purification, and Analysis of O-GlcNAc Modified Proteins

  • Protocol
  • First Online:
Glycomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 534))

Summary

The modification of Ser and Thr residues of cytoplasmic and nuclear proteins with a monosaccharide of O-linked β-N-acetylglucosamine is an essential and dynamic post-translational modification of metazoans. Deletion of the O-GlcNAc transferase (OGT), the enzyme that adds O-GlcNAc, is lethal in mammalian cells highlighting the importance of this post-translational modification in regulating cellular function. O-GlcNAc is believed to modulate protein function in a manner analogous to protein phosphorylation. Notably, on some proteins O-GlcNAc and O-phosphate modify the same Ser/Thr residue, suggesting that a reciprocal relationship exists between these two post-translational modifications. In this chapter we describe the most robust techniques for the detection and purification of O-GlcNAc modified proteins, and discuss some more specialized techniques for site-mapping and detection of O-GlcNAc during mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Love, D. C., and Hanover, J. A. (2005) The hexosamine signaling pathway: deciphering the “O-GlcNAc code. ” Sci STKE 2005, re13.

    Google Scholar 

  2. Kearse, K. P., and Hart, G. W. (1991) Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc Natl Acad Sci U S A 88, 1701–5.

    Article  PubMed  CAS  Google Scholar 

  3. Slawson, C., Zachara, N. E., Vosseller, K., Cheung, W. D., Lane, M. D., and Hart, G. W. (2005) Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 280, 32944–56.

    Article  PubMed  CAS  Google Scholar 

  4. Slawson, C., Shafii, S., Amburgey, J., and Potter, R. (2002) Characterization of the O-GlcNAc protein modification in Xenopus laevis oocyte during oogenesis and progesterone-stimulated maturation. Biochim Biophys Acta 1573, 121–9.

    Article  PubMed  CAS  Google Scholar 

  5. Lefebvre, T., Baert, F., Bodart, J. F., Flament, S., Michalski, J. C., and Vilain, J. P. (2004) Modulation of O-GlcNAc glycosylation during Xenopus oocyte maturation. J Cell Biochem 93, 999–1010.

    Article  PubMed  CAS  Google Scholar 

  6. Zachara, N. E., O’Donnell, N., Cheung, W. D., Mercer, J. J., Marth, J. D., and Hart, G. W. (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279, 30133–42.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, J., Pang, Y., Chang, T., Bounelis, P., Chatham, J. C., and Marchase, R. B. (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40, 303–12.

    Article  PubMed  CAS  Google Scholar 

  8. Zachara, N. E., and Hart, G. W. (2004) O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 1673, 13–28.

    Article  PubMed  CAS  Google Scholar 

  9. Shafi, R., Iyer, S. P., Ellies, L. G., O’Donnell, N., Marek, K. W., Chui, D., Hart, G. W., and Marth, J. D. (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 97, 5735–9.

    Article  PubMed  CAS  Google Scholar 

  10. O’Donnell, N., Zachara, N. E., Hart, G. W., and Marth, J. D. (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 24, 1680–90.

    Article  PubMed  Google Scholar 

  11. Torres, C. R., and Hart, G. W. (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259, 3308–17.

    PubMed  CAS  Google Scholar 

  12. Khidekel, N., Arndt, S., Lamarre-Vincent, N., Lippert, A., Poulin-Kerstien, K. G., Ramakrishnan, B., Qasba, P. K., and Hsieh-Wilson, L. C. (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125, 16162–3.

    Article  PubMed  CAS  Google Scholar 

  13. Khidekel, N., Ficarro, S. B., Peters, E. C., and Hsieh-Wilson, L. C. (2004) Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc Natl Acad Sci USA 101, 13132–7.

    Article  PubMed  CAS  Google Scholar 

  14. Tai, H. C., Khidekel, N., Ficarro, S. B., Peters, E. C., and Hsieh-Wilson, L. C. (2004) Parallel identification of O-GlcNAc-modified proteins from cell lysates. J Am Chem Soc 126, 10500–1.

    Article  PubMed  CAS  Google Scholar 

  15. Reason, A. J., Morris, H. R., Panico, M., Marais, R., Treisman, R. H., Haltiwanger, R. S., Hart, G. W., Kelly, W. G., and Dell, A. (1992) Localization of O-GlcNAc modification on the serum response transcription factor. J Biol Chem 267, 16911–21.

    PubMed  CAS  Google Scholar 

  16. Roquemore, E. P., Chou, T. Y., and Hart, G. W. (1994) Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol 230, 443–60.

    Article  PubMed  CAS  Google Scholar 

  17. Greis, K. D., Hayes, B. K., Comer, F. I., Kirk, M., Barnes, S., Lowary, T. L., and Hart, G. W. (1996) Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal Biochem 234, 38–49.

    Article  PubMed  CAS  Google Scholar 

  18. Greis, K. D., and Hart, G. W. (1997) in “Methods in Molecular Biology, Vol. XX: Glycoanalysis Protocols” (Hounsell, E. F., Ed. ), Humana Press, Totowa, NJ.

    Google Scholar 

  19. Cole, R. N., and Hart, G. W. (1999) Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. J Neurochem 73, 418–28.

    Article  PubMed  CAS  Google Scholar 

  20. Haynes, P. A., and Aebersold, R. (2000) Simultaneous detection and identification of O-GlcNAc-modified glycoproteins using liquid chromatography-tandem mass spectrometry. Anal Chem 72, 5402–10.

    Article  PubMed  CAS  Google Scholar 

  21. Chalkley, R. J., and Burlingame, A. L. (2001) Identification of GlcNAcylation sites of peptides and alpha-crystallin using Q-TOF mass spectrometry. J Am Soc Mass Spectrom 12, 1106–13.

    Article  PubMed  CAS  Google Scholar 

  22. Cole, R. N., and Hart, G. W. (2001) Cytosolic O-glycosylation is abundant in nerve terminals. J Neurochem 79, 1080–9.

    Article  PubMed  CAS  Google Scholar 

  23. Comer, F. I., Vosseller, K., Wells, L., Accavitti, M. A., and Hart, G. W. (2001) Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal Biochem 293, 169–77.

    Article  PubMed  CAS  Google Scholar 

  24. Zachara, N. E., Gao, Y., Cole, R. N., and Hart, G. W. (2001) Detection and analysis of proteins modified by O-linked N-acetylglucosamine. Curr Protocols Prot Sci 2, 12. 8. 1–12. 8. 25.

    Google Scholar 

  25. Wells, L., Vosseller, K., Cole, R. N., Cronshaw, J. M., Matunis, M. J., and Hart, G. W. (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1, 791–804.

    Article  PubMed  CAS  Google Scholar 

  26. Chalkley, R. J., and Burlingame, A. L. (2003) Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry. Mol Cell Proteomics 2, 182–90.

    Article  PubMed  CAS  Google Scholar 

  27. Vocadlo, D. J., Hang, H. C., Kim, E. J., Hanover, J. A., and Bertozzi, C. R. (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci USA 100, 9116–21.

    Article  PubMed  CAS  Google Scholar 

  28. Zachara, N. E., Cheung, W. D., and Hart, G. W. (2003) in “Methods in Molecular Biology, Vol. 284: Signal Transduction Protocols” (Dickson, R. C., Ed. ), Humana Press, Totowa, NJ.

    Google Scholar 

  29. Sprung, R., Nandi, A., Chen, Y., Kim, S. C., Barma, D., Falck, J. R., and Zhao, Y. (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4, 950–7.

    Article  PubMed  CAS  Google Scholar 

  30. Vosseller, K., Hansen, K. C., Chalkley, R. J., Trinidad, J. C., Wells, L., Hart, G. W., and Burlingame, A. L. (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics 5, 388–98.

    Article  PubMed  CAS  Google Scholar 

  31. Liu, H. D., Li, Y. M., Du, J. T., Hu, J., and Zhao, Y. F. (2006) Novel acetylation-aided migrating rearrangement of uridine-diphosphate-N-acetylglucosamine in electrospray ionization multistage tandem mass spectrometry. J Mass Spectrom 41, 208–15.

    Article  PubMed  CAS  Google Scholar 

  32. Nandi, A., Sprung, R., Barma, D. K., Zhao, Y., Kim, S. C., Falck, J. R., and Zhao, Y. (2006) Global identification of O-GlcNAc-modified proteins. Anal Chem 78, 452–8.

    Article  PubMed  CAS  Google Scholar 

  33. Vosseller, K., Trinidad, J. C., Chalkley, R. J., Specht, C. G., Thalhammer, A., Lynn, A. J., Snedecor, J. O., Guan, S., Medzihradszky, K. F., Maltby, D. A., Schoepfer, R., and Burlingame, A. L. (2006) O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol Cell Proteomics 5, 923–34.

    Article  PubMed  CAS  Google Scholar 

  34. Greis, K. D., and Hart, G. W. (1998) Analytical methods for the study of O-GlcNAc glycoproteins and glycopeptides. Methods Mol Biol 76, 19–33.

    PubMed  CAS  Google Scholar 

  35. Dong, D. L., and Hart, G. W. (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol. J Biol Chem 269, 19321–30.

    PubMed  CAS  Google Scholar 

  36. Roos, M. D., Xie, W., Su, K., Clark, J. A., Yang, X., Chin, E., Paterson, A. J., and Kudlow, J. E. (1998) Streptozotocin, an analog of N-acetylglucosamine, blocks the removal of O-GlcNAc from intracellular proteins. Proc Assoc Am Physicians 110, 422–32.

    PubMed  CAS  Google Scholar 

  37. Stubbs, K. A., Zhang, N., and Vocadlo, D. J. (2006) A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org Biomol Chem 4, 839–45.

    Article  PubMed  CAS  Google Scholar 

  38. Gao, Y., Parker, G. J., and Hart, G. W. (2000) Streptozotocin-induced beta-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. Arch Biochem Biophys 383, 296–302.

    Article  PubMed  CAS  Google Scholar 

  39. Haltiwanger, R. S., Grove, K., and Philipsberg, G. A. (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-beta-N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. J Biol Chem 273, 3611–7.

    Article  PubMed  CAS  Google Scholar 

  40. Turner, J. R., Tartakoff, A. M., and Greenspan, N. S. (1990) Cytologic assessment of nuclear and cytoplasmic O-linked N-acetylglucosamine distribution by using anti-streptococcal monoclonal antibodies. Proc Natl Acad Sci USA 87, 5608–12.

    Article  PubMed  CAS  Google Scholar 

  41. Holt, G. D., Snow, C. M., Senior, A., Haltiwanger, R. S., Gerace, L., and Hart, G. W. (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104, 1157–64.

    Article  PubMed  CAS  Google Scholar 

  42. Snow, C. M., Senior, A., and Gerace, L. (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104, 1143–56.

    Article  PubMed  CAS  Google Scholar 

  43. Matsuoka, Y., Shibata, S., Yasuhara, N., and Yoneda, Y. (2002) Identification of Ewing’s sarcoma gene product as a glycoprotein using a monoclonal antibody that recognizes an immunodeterminant containing O-linked N-acetylglucosamine moiety. Hybrid Hybridomics 21, 233–6.

    Article  PubMed  CAS  Google Scholar 

  44. Kamemura, K., Hayes, B. K., Comer, F. I., and Hart, G. W. (2002) Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J Biol Chem 277, 19229–35.

    Article  PubMed  CAS  Google Scholar 

  45. Ludemann, N., Clement, A., Hans, V. H., Leschik, J., Behl, C., and Brandt, R. (2005) O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J Biol Chem 280, 31648–58.

    Article  PubMed  Google Scholar 

  46. Ibarrola, N., Kalume, D. E., Gronborg, M., Iwahori, A., and Pandey, A. (2003) A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem 75, 6043–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Prof. Gerald W. Hart and Dr Chad Slawson (Johns Hopkins University School of Medicine) for comments on this manuscript; and the technical help of Katie Zoey Ho (Johns Hopkins Singapore). Some of the data presented in this paper were collected in the laboratory of Prof. Gerald W. Hart (Johns Hopkins University School of Medicine) and were supported by NIH grants HD R37-13563, CA R01-42486, DK-R01-61671, DK-R21/33-71280 (GWH), the National Heart, Lung, and Blood Institute, National Institutes of Health, contract No. N01-HV-28180 (GWH). Under a licensing agreement between Covance Research Products and The Johns Hopkins University, Dr. Hart receives a share of royalties received by the university on sales of the CTD 110.6 antibody. The terms of this arrangement are being managed by The Johns Hopkins University in accordance with its conflict of interest policies. NEZ is supported by an A*Star Research grant to Johns Hopkins Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha E. Zachara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zachara, N.E. (2009). Detecting the “O-GlcNAcome”; Detection, Purification, and Analysis of O-GlcNAc Modified Proteins. In: Packer, N.H., Karlsson, N.G. (eds) Glycomics. Methods in Molecular Biology™, vol 534. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-022-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-022-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-774-7

  • Online ISBN: 978-1-59745-022-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics