Skip to main content

Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide today. An increasing understanding of the pathogenesis of lung cancer at the cellular and molecular levels has revealed that lung cancer arises as the result of the accumulation of multiple genetic and epigenetic alterations. These include chromosomal abnormalities, aberrant DNA methylation, the activation of protooncogenes, the inactivation of tumor suppressor genes, and changes in signal transduction pathways. This chapter provides a brief summary of the recent advances in understanding the molecular biology of human lung cancer with emphasis on tumoracquired deregulation of cell proliferation and survival. Key Words: Apoptosis; chromosomal abnormality; epigenetic alternation; lung cancer; oncogene; proliferation; signal transduction; telomerase; tumor suppressor gene; tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Selected References

  • Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest 2003; 123: 21S–49S.

    Article  PubMed  Google Scholar 

  • Bost F, McKay R, Dean N, Mercola D. The JUN kinase/stress-activated protein kinase pathway is required for epidermal growth factor stimulation of growth of human A549 lung carcinoma cells. J Biol Chem 1997;272:33,422–33,429.

    Article  PubMed  CAS  Google Scholar 

  • Bost F, McKay R, Potapova O, et al. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 1999;19:1938–1949.

    PubMed  CAS  Google Scholar 

  • Brambilla E, Gazzeri S, Lantuejoul S, et al. p53 mutant immunophenotype and deregulation of p53 transcription pathway (Bcl2, Bax, and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res 1998;4:1609–1618.

    PubMed  CAS  Google Scholar 

  • Brambilla E, Negoescu A, Gazzeri S, et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 1996;149: 1941–1952.

    Google Scholar 

  • Broers JL, Viallet J, Jensen SM, et al. Expression of c-myc in progenitor cells of the bronchopulmonary epithelium and in a large number of non-small cell lung cancers. Am J Respir Cell Mol Biol 1993;9:33 3–3.

    Google Scholar 

  • Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999;15: 269–290.

    Article  PubMed  CAS  Google Scholar 

  • Chan DC, Gera L, Stewart JM, et al. Bradykinin antagonist dimer, CU201, inhibits the growth of human lung cancer cell lines in vitro and in vivo and produces synergistic growth inhibition in combination with other antitumor agents. Clin Cancer Res 2002;8:1280–1287.

    PubMed  CAS  Google Scholar 

  • Cho JY, Kim JH, Lee YH, et al. Correlation between K-ras gene mutation and prognosis of patients with nonsmall cell lung carcinoma. Cancer 1997;79:462–467.

    Article  PubMed  CAS  Google Scholar 

  • Chun KH, Kosmeder JW II, Sun S, et al. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J Natl Cancer Inst 2003;95: 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Clark AS, West KA, Blumberg PM, Dennis PA. Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCδ promotes cellular survival and chemotherapeutic resistance. Cancer Res 2003;63:780–786.

    PubMed  CAS  Google Scholar 

  • Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr Opin Genet Dev 1999;9:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Cory S, Adams JM. The bcl2 family: regulators of the cellular life-ordeath switch. Nat Rev Cancer 2002;2:647–656.

    Article  PubMed  CAS  Google Scholar 

  • Crowell JA, Steele VE. AKT and the phosphatidylinositol 3-kinase/AKT pathway: important molecular targets for lung cancer prevention and treatment. J Natl Cancer Inst 2003;95:252, 253.

    PubMed  Google Scholar 

  • Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 2000;25:315–319.

    Article  PubMed  CAS  Google Scholar 

  • Dammann R, Schagdarsurengin U, Strunnikova M, et al. Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol Histopathol 2003;18:665–677.

    PubMed  CAS  Google Scholar 

  • Dempsey EC, Newton AC, Mochly-Rosen D, et al. Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 2000;279:L429–L438.

    PubMed  CAS  Google Scholar 

  • Ding L, Wang H, Lang W, Xiao L. Protein kinase C-epsilon promotes survival of lung cancer cells by suppressing apoptosis through dysregulation of the mitochondrial caspase pathway. J Biol Chem 2002; 277:35, 305–35,313.

    Google Scholar 

  • Dong X, Mao L. Molecular biology of human lung cancer. In: Weitberg AB, ed. Cancer of the Lung, Totowa: pmHumana Press, 2002; pp. 103–127.

    Google Scholar 

  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001;411:342–348.

    Article  PubMed  CAS  Google Scholar 

  • Facchini FM, Spiro SG. Chemotherapy in small-cell lung cancer. In: Brambilla C, Brambilla E, eds. Lung Biology in Health and Disease: Lung Tumors, vol. 124. New York: Marcel Dekker, 1999; pp. 611–630.

    Google Scholar 

  • Ferreira CG, Span SW, Peters GJ, et al. Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res 2000;60:7133–7141.

    PubMed  CAS  Google Scholar 

  • Fontanini G, De Laurentiis M, Vignati S, et al. Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin Cancer Res 1998;4:241–249.

    PubMed  CAS  Google Scholar 

  • Franklin WA, Veve R, Hirsch FR, et al. Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol 2002;29 (Suppl 4):3–14.

    Article  PubMed  CAS  Google Scholar 

  • Gazzeri S, Della Valle V, Chaussade L, et al. The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 1998;58:3926–3931.

    PubMed  CAS  Google Scholar 

  • Girard L, Zochbauer-Muller S, Virmani AK, et al. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 2000;60:4894–4906.

    PubMed  CAS  Google Scholar 

  • Grandori C, Eisenman RN. Myc target genes. Trends Biochem Sci 1997;22:177–181.

    Article  PubMed  CAS  Google Scholar 

  • Greenlee RT, Hill-Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J Clin 2001;51:15–36.

    Article  PubMed  CAS  Google Scholar 

  • Grossi F, Loprevite M, Chiaramondia M, et al. Prognostic significance of K-ras, p53, bcl-2, PCNA, CD34 in radically resected non-small cell lung cancers. Eur J Cancer 2003;39:1242–1250.

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka T, Nakayama J, Mukai J, et al. Association of smoking with apoptosis-regulated proteins (Bcl-2, bax and p53) in resected nonsmall-cell lung cancers. Int J Cancer 2001;91:267–269.

    Article  PubMed  CAS  Google Scholar 

  • Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91:1194–1210.

    Article  PubMed  CAS  Google Scholar 

  • Hibi K, Takahashi T, Yamakawa K, et al. Three distinct regions involved in 3p deletion in human lung cancer. Oncogene 1992;7:445–449.

    PubMed  CAS  Google Scholar 

  • Hirsch FR, Scagliotti GV, Langer CJ, et al. Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies. Lung Cancer 2003;41(Suppl 1):S29–S42.

    Article  PubMed  Google Scholar 

  • Hofmann J. Modulation of protein kinase C in antitumor treatment. Rev Physiol Biochem Pharmacol 2001;142:1–96.

    PubMed  CAS  Google Scholar 

  • Hung J, Kishimoto aSugio K, et al. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. JAMA 1995;273:558–563.

    Article  PubMed  CAS  Google Scholar 

  • Husgafvel-Pursiainen K, Boffetta P, Kannio A, et al. p53 mutations and exposure to environmental tobacco smoke in a multicenter study on lung cancer. Cancer Res 2000;60:2906–2911.

    PubMed  CAS  Google Scholar 

  • Jacobson DR. ras mutations in lung cancer. In: Brambilla C, Brambilla, E, eds. Lung Tumors. New York: Marcel Dekker, 1999; pp. 139–156.

    Google Scholar 

  • Ji L, Nishizaki M, Gao B, et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 2002;62:2715–2720.

    PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3:415–28.

    Article  PubMed  CAS  Google Scholar 

  • Kalomenidis I, Orphanidou D, Papamichalis G, et al. Combined expression of p53, Bcl-2, and p21WAF-1 proteins in lung cancer and premalignant lesions: association with clinical characteristics. Lung 2001; 179:265–278.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabara K, Oyama T, Sano T, et al. Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primary non-small cell lung cancers. Int J Cancer 1998;79: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Kelley MJ, Johnson BE. Molecular genetics of lung cancer. In: Carney DN, ed. Lung Cancer. Boston: Arnold, 1995; pp. 245–266.

    Google Scholar 

  • Khosravi-Far R, Campbell S, Rossman K, Der CJ. Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res 1998;72:57–107.

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Nelson HH, Wiencke JK, et al. Promoter methylation of DAPkinase: Association with advanced stage in non-small cell lung cancer. Oncogene 2001;20:1765–1770.

    Article  PubMed  CAS  Google Scholar 

  • Krystal GW, Hines SJ, Organ CP. Autocrine growth of small cell lung cancer mediated by coexpression of c-kit and stem cell factor. Cancer Res 1996;56:370–376.

    PubMed  CAS  Google Scholar 

  • Kumimoto H, Hamajima N, Nishimoto Y, et al. L-myc genotype is associated with different susceptibility to lung cancer in smokers. Jpn J Cancer Res 2002;93:1–5.

    PubMed  CAS  Google Scholar 

  • Levine AJ. p53, the cellular gatekeeper for growth and cell division. Cell 1997;88:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Lowy DR, Willumsen BM. Function and regulation of ras. Annu Rev Biochem 1993;62:851–891.

    Article  PubMed  CAS  Google Scholar 

  • Mabry M, Nakagawa T, Nelkin B, et al. v-Ha-ras oncogene insertion: a model for tumor progression of human small cell lung cancer. Proc Natl Acad Sci U S A 1988;85:6523–6527.

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Hruban RH, Boyle JO, et al. Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res 1994;54: 1634–1637.

    PubMed  CAS  Google Scholar 

  • Mills NE, Fishman C, Rom WN, et al. Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res 1995;55: 1444–1447.

    PubMed  CAS  Google Scholar 

  • Milner AE, Palmer DH, Hodgkin EA, et al. Induction of apoptosis by chemotherapeutic drugs: the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells. Cell Death Differ 2002;9:287–300.

    Article  PubMed  CAS  Google Scholar 

  • Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell 2002; 1:49–52.

    Article  PubMed  CAS  Google Scholar 

  • Mitsudomi T, Viallet J, Mulshine J, et al. Mutations of ras genes distinguish a subset of non-small-cell lung cancer cell lines from small-cell lung cancer cell lines. Oncogene 1991:6:1353–1362.

    PubMed  CAS  Google Scholar 

  • Nicholson SA, Okby NT, Khan MA, et al. Alterations of p14ARF, p53, and p73 genes involved in the E2F-1-mediated apoptotic pathways in non-small cell lung carcinoma. Cancer Res 2001;61:5636–5643.

    PubMed  CAS  Google Scholar 

  • Rathi A, Kazuo Y, Onuki N, et al. Telomerase and lung cancer. In: Brambilla C, Brambilla E, eds. Lung Biology in Health and Disease: Lung Tumors, vol. 124. New York: Marcel Dekker, 1999; pp. 269–277.

    Google Scholar 

  • Risse-Hackl G, Adamkiewicz J, Wimmel A, Schuermann M. Transition from SCLC to NSCLC phenotype is accompanied by an increased TRE-binding activity and recruitment of specific AP-1 proteins. Oncogene 1998;16:3057–3068.

    Article  PubMed  CAS  Google Scholar 

  • Robles AI, Linke SP, Harris CC. The p53 network in lung carcinogenesis. Oncogene 2002;21:6898–6907.

    Article  PubMed  CAS  Google Scholar 

  • Roz L, Gramegna M, Ishii H, et al. Restoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in lung and cervical cancer cell lines. Proc Natl Acad Sci USA 2002;99: 3615–3620.

    Article  PubMed  CAS  Google Scholar 

  • Rozengurt E. Autocrine loops, signal transduction, and cell cycle abnormalities in the molecular biology of lung cancer. Curr Opin Oncol 1999;11:116–122.

    Article  PubMed  CAS  Google Scholar 

  • Rusch V, Klimstra D, Venkatraman E, et al. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor α is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 1997;3:515–522.

    PubMed  CAS  Google Scholar 

  • Sanchez-Cespedes M, Ahrendt SA, Piantadosi S, et al. Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res 2001;61:1309–1313.

    PubMed  CAS  Google Scholar 

  • Sattler M, Ralgia R. Molecular and cellular biology of small cell lung cancer. Semin Oncol 2003;30:57–71.

    Article  PubMed  CAS  Google Scholar 

  • Scheid MP, Woodgett JR. Pkb/akt: functional insights from genetic models. Nat Rev Mol Cell Biol 2001;2:760–768.

    Article  PubMed  CAS  Google Scholar 

  • Sethi T, Langdon S, Smyth J, Rozengurt E. Growth of small cell lung cancer cells: Stimulation by multiple neuropeptides and inhibition by broad spectrum antagonists in vitro and in vivo. Cancer Res 1992;52(Suppl):2737s–2742s.

    Google Scholar 

  • Seufferlein T, Rozengurt E. Galanin, neurotensin, and phorbol esters rapidly stimulate activation of mitogen-activated protein kinase in small cell lung cancer cells. Cancer Res 1996;56:5758–5764.

    PubMed  CAS  Google Scholar 

  • Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.

    Article  PubMed  CAS  Google Scholar 

  • Shih CM, Kuo YY, Wang YC, et al. Association of L-myc polymorphism with lung cancer susceptibility and prognosis in relation to ageselected controls and stratified cases. Lung Cancer 2002;36:125–132.

    Article  PubMed  Google Scholar 

  • Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J Cell Biochem 2003;88:885–898.

    Article  PubMed  CAS  Google Scholar 

  • Shivapurkar N, Toyooka S, Eby MT, et al. Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther 2002; 1:653–69.

    Google Scholar 

  • Shohat G, Shani G, Eisenstein M, Kimchi A. The DAP-kinase family of proteins: study of a novel group of calcium-regulated death-promoting kinases. Biochim Biophys Acta 2002; 1600:45–50.

    PubMed  CAS  Google Scholar 

  • Sidransky D, Hollstein M. Clinical implications of the p53 gene. Annu RevMed 1996;47:285–301.

    Article  CAS  Google Scholar 

  • Sklar M. Increased resistance to cis-diamminedichloroplatinum(II) in NIH 3T3 cells transformed by ras oncogenes. Cancer Res 1988;48:793–797.

    PubMed  CAS  Google Scholar 

  • Sklar M. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 1988;239:645–647.

    Article  PubMed  CAS  Google Scholar 

  • Smit E, Postmus P. Chemotherapy of small cell lung cancer. In: Carney D, ed. Lung Cancer. Boston: Arnold, 1995; pp. 156–172.

    Google Scholar 

  • Sozzi G, Sard L, De Gregorio L, et al. Association between cigarette smoking and FHIT gene alterations in lung cancer. Cancer Res 1997;57:2121–2123.

    PubMed  CAS  Google Scholar 

  • Tang X, Khuri FR, Lee JJ, et al. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I nonsmall-cell lung cancer. J Natl Cancer Inst 2000;92:1511–1516.

    Article  PubMed  CAS  Google Scholar 

  • Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther 2001;1:61–67.

    PubMed  CAS  Google Scholar 

  • Tsai CM, Chang KT, Wu LH, et al. Correlations between intrinsic chemoresistance and HER-2/neu gene expression, p53 gene mutations, and cell proliferation characteristics in non-small cell lung cancer cell lines. Cancer Res 1996;56:206–209.

    PubMed  CAS  Google Scholar 

  • Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999;96:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Vos MD, Ellis CA, Bell A, et al. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 2000;275: 35, 669–35,672.

    Google Scholar 

  • Weber JD, Jeffers JR, Rehg JE, et al. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 2000;14:2358–2365.

    Article  PubMed  CAS  Google Scholar 

  • West KA, Brognard J, Clark AS, et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 2003;1 11:81–90.

    Article  CAS  Google Scholar 

  • Wingo PA, Ries LA, Giovino GA, et al. Annual report to the nation on the status of cancer, 1973-1996, with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst 1999;91:675–690.

    Article  PubMed  CAS  Google Scholar 

  • Wistuba II, Behrens C, Virmani AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 2000;60:1949–1960.

    PubMed  CAS  Google Scholar 

  • Xiao L, Lang W. A dominant role for the c-JunNH2-terminal kinase in oncogenic Ras-induced morphologic transformation of human lung carcinoma cells. Cancer Res 2000;60:400–408.

    PubMed  CAS  Google Scholar 

  • Zochbauer-Muller S, Fong KM, Maitra A. 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 2001;61:3581–3585.

    PubMed  CAS  Google Scholar 

  • Zochbauer-Muller S, Gazdar AF, Minna JD. Molecular pathogenesis of lung cancer. Annu Rev Physiol 2002;64:681–708.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Xiao, L. (2006). Lung Cancer. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_75

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_75

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics