Skip to main content

Cellular Functions and Fluxes of Calcium

  • Chapter
Calcium in Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

The divalent cation, or ionized, calcium—Ca2+—is a mineral that is critical to normal human health, playing vital roles in fertilization, metabolism, blood clotting, nerve impulse conduction, muscle contraction, structure of the bony skeleton, and cellular communication. As covered in detail in Chapter 9, the primary dietary sources of calcium in contemporary diets are dairy products and to a lesser extent, leafy green vegetables. Dietary recommendations for calcium vary with age and pregnancy, as discussed in Chapter 8. When considering dietary sources, it is important to recognize the fact that ionized calcium is the biologically active form of the mineral and that bioavailability of calcium varies among different food groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Racay P, Kaplan P, Lehotsky J. Control of Ca2+ homeostasis in neuronal cells. Gen Physiol Biophys 1996;15:193–210.

    CAS  Google Scholar 

  2. Orrenius S, Zhivotovsky, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nature Rev Mol Cell Biol 2003;4:552–565.

    CAS  Google Scholar 

  3. Ledeen RW, Wu G. Ganglioside function in calcium homeostasis and signaling. Neurochem Res 2002;27:637–647.

    CAS  Google Scholar 

  4. Berridge MJ. Inositol trisphosphate and calcium signaling. Nature 1993;361:315–325.

    CAS  Google Scholar 

  5. Jaffe LF. Classes and mechanisms of calcium waves. Cell Calcium 1993;14:736–745.

    CAS  Google Scholar 

  6. Bootman MD, Lipp P, Berridge MJ. The organization and functions of local Ca2+ signals. J Cell Sci 2001;114:2213–2222.

    CAS  Google Scholar 

  7. Tovey S, de Smet P, Lipp P, et al. Calcium puffs are generic InsP3-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 2001;114:3979–3989.

    CAS  Google Scholar 

  8. Breitwieser GE, Gama L. Calcium-sensing receptor activation induces intracellular calcium oscillations. Am J Physiol Cell Physiol 2001;280:C1412–C1421.

    CAS  Google Scholar 

  9. Kutchai H. Cellular membranes and transmembrane transport of solutes and water. In: Berne RM, Levy MN, eds. Physiology, 4th ed, Mosby, St. Louis: 1998:3–20.

    Google Scholar 

  10. Wang MC, Dolphin A, Kitmitto A. L-type voltage-gated calcium channels: understanding function through structure. FEBS Lett 2004;564:245–250.

    CAS  Google Scholar 

  11. Large WA. Receptor-operated Ca2+-permeable non-selective cation channels in vascular smooth muscle: a physiologic perspective. J Cardiovasc Electrophysiol 2002;13:493–501.

    Google Scholar 

  12. Putney JW Jr. Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium 1997;21:257–261.

    CAS  Google Scholar 

  13. Fagan KA, Graf RA, Tolman S, Schaack J, Cooper MF. Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry. J Biol Chem 2000;275:40,187–40,194.

    CAS  Google Scholar 

  14. Herms I, Schneider J, Dewachter I, Caluwaerts N, Kretzshmar H, Van Leuven F. Capacitative calcium entry is directly activated by mutant presenilin-1 independent of the expression of the amyloid precursor protein. J Biol Chem 2003;278:2484–2489.

    CAS  Google Scholar 

  15. Putney JW Jr. Presenilins, Alzheimer’s disease, and capacitative calcium entry. Neuron 2000;27:411–412.

    CAS  Google Scholar 

  16. Putney JW Jr. Capacitative calcium entry in the nervous system. Cell Calcium 2003;34:339–344.

    CAS  Google Scholar 

  17. Brown EM, MacLeod RJ Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001;81:239–297.

    CAS  Google Scholar 

  18. Birnbaumer L, Zhu X, Jiang M, et al On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA 1996;93:15,195–15,202.

    CAS  Google Scholar 

  19. Doering CJ, Zamponi GW. Molecular pharmacology of high voltage-activated calcium channels. J Bioenerg Biomembr 2003;35:491–505.

    CAS  Google Scholar 

  20. Hersel J, Jung S, Mohacsi P, Hullin R. Expression of the L-type calcium channel in human heart failure. Basic Res Cardiol 2002;97:I4–I10.

    Google Scholar 

  21. Abernethy DR, Soldatov NM. Structure-functional diversity of human L-type Ca2+ channel: perspectives for new pharmacological targets. J Pharmacol Exp Ther 2002;300:724–728.

    CAS  Google Scholar 

  22. Bourinet E, Mangoni ME, Nargeot J. Dissecting the functional role of different isoforms of the L-type Ca2+ channel. J Clin Invest 2004;113:1382–1384.

    CAS  Google Scholar 

  23. Triggel DJ. The physiological and pharmacological significance of cardiovascular T-type voltage-gated calcium channels. Am J Hypertens 1998;11:80S–87S.

    Google Scholar 

  24. Clozel JP, Ertel EA, Ertel SI. Voltage-gated T-type Ca2+ channels and heart failure. Proc Assoc Am Physicians 1999;111:429–437.

    CAS  Google Scholar 

  25. Hermsmeyer K, Mishra S, Miyagawa K, Minshall R. Physiologic and pathophysiologic relevance of Ttype calcium channels: potential indications for T-type calcium antagonists. Clin Ther 1997;19:18–26.

    CAS  Google Scholar 

  26. Furukawa T, Ito H, Nitta J, et al. Endothelin-1 enhances calcium entry through T-type calcium channels in cultured neonatal rat ventricular myocytes. Cir Res 1992;71:1242–1253.

    CAS  Google Scholar 

  27. Giles TD. Hypertension and pathologic cardiovascular remodeling: a potential therapeutic role for Ttype calcium antagonists. Clin Ther 1997;19:27–38.

    CAS  Google Scholar 

  28. Ertel SI, Ertel EA, Clozel JP. T-type Ca2+ channels and pharmacological blockade: potential pathophysiological relevance. Cardiovasc Drugs Ther 1997;11:723–739.

    CAS  Google Scholar 

  29. Snutch TP, Sutton KG, Zamponi GW. Voltage-dependent calcium channels-beyond dihydropyridine antagonists. Curr Opin Pharmacol 2001;1:11–16.

    CAS  Google Scholar 

  30. Dryer SE, Lhuillier L, Cameron JS, Martin-Caraballo M. Expression of KCa channels in identified populations of developing vertebrate neurons: role of neurotrophic factors and activity. J Physiol (Paris) 2003;97:49–58.

    CAS  Google Scholar 

  31. Missiaen L, Robberecht W, Van Den Bosch L, et al. Abnormal intracellular Ca2+ homeostasis and disease. Cell Calcium 2000;28:1–21.

    CAS  Google Scholar 

  32. McFadzean IM, Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. Br J Pharmacol 2002;135:1–13.

    CAS  Google Scholar 

  33. Tsunoda Y. Receptor-operated calcium influx mediated by protein tyrosine kinase pathways. J Recept Signal Transduct Res 1998;18:281–310.

    CAS  Google Scholar 

  34. Oonuma H, Nakajima T, Nagata T, et al. Endothelin-1 is a potent activator of nonselective cation currents in human bronchial smooth muscle cells. Am J Repir Cell Mol Biol 2000;23:213–221.

    CAS  Google Scholar 

  35. Wang YX, Kotlikoff MT. Signaling pathway for histamine activation of non-selective cation channels in equine tracheal myocytes. J Physiol 2000;523:131–138

    CAS  Google Scholar 

  36. Lambert DG, Nahorski SR. Carbachol-stimulated calcium entry in SH-SY5Y human neuroblastoma cells: which route? J Physiol (Paris) 1992;86:77–82.

    CAS  Google Scholar 

  37. Li WP, Tsiokas L, Sansom SC, Ma R. Epidermal growth factor activates store-operated Ca2+ channels through an inositol1,4,5-trisphosphate-independent pathway in human glomerular mesanglial cells. J Biol Chem 2004;279:4570–4577.

    CAS  Google Scholar 

  38. Lamers JM, De Jonge HW, Panagia V, Van Heugten HA. Receptor-mediated signaling pathways acting through hydrolysis of membrane phospholipids in cardiomyocytes. Cardioscience 1993;4:121–131.

    CAS  Google Scholar 

  39. Flemming R, Cheong A, Dedman AM Beech DJ. Discrete store-operated calclium influx into intracellular compartment in rabbit arteriolar smooth muscle. J Physiol 2002;543:455–464.

    CAS  Google Scholar 

  40. Ma HT, Venkatachalam K, Parys JB, Gill DL. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem 2002;277:6915–6922

    CAS  Google Scholar 

  41. Ma HT, Venkatachalam K, Rys-Sikora KE, He LP, Zheng F, Gill DL. Modification of phospholipase Cgamma-induced Ca2+ signal generation by 2-aminoethoxydiphenyl borate. Biochem J 2003;376:667–676.

    CAS  Google Scholar 

  42. Putney JW Jr, Broad LM, Braun FJ, Lievremont JP, Bird GSJ. Mechanisms of capacitative calcium entry. J Cell Sci 2001;114:2223–2229.

    CAS  Google Scholar 

  43. Holfmann T, Schaefer M, Schulz G, Gudermann T. Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med 2000;78:14–25.

    Google Scholar 

  44. Takemura H., Hughes AR, Thastrup O, and Putney JW, Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulate calcium fluxes at the plasma membrane. J Biol Chem 1989;264:12,266–12,271.

    CAS  Google Scholar 

  45. Putney JW, Jr. Capacitative calcium entry revisited. Cell Calcium 1990;11:611–624.

    CAS  Google Scholar 

  46. Putney JW, Jr, Bird GSJ. The inositol phosphate-calcium signaling system in no-excitable cells. Endocr Rev 1993;14:610–631.

    CAS  Google Scholar 

  47. Montero M., Garcia-Sancho, J. and Alvarez J. Inhibition of the calcium store-operated calcium entry pathway by chemotactic peptide and by phorbol ester develops gradually and independently along differentiation of HL60 cells. J Biol Chem 1993;268:13,055–13,061.

    CAS  Google Scholar 

  48. Clapham DE. Calcium signaling. Cell 1995;80:259–268.

    CAS  Google Scholar 

  49. Berridge MJ. Calcium oscillations. J Biol Chem 1990;265:9583–9586.

    CAS  Google Scholar 

  50. Thomas AP, Bird GS, Hajnoczky G, Robb-Gaspers LD Putney JW Jr. Spatial and temporal aspects of cellular calcium signaling. FASEB J 1996;10:1505–1517.

    CAS  Google Scholar 

  51. Taylor CW, Thorn P. Calcium signaling: IP3 rises again… and again. Curr Biol. 2001;11:R352–R355.

    CAS  Google Scholar 

  52. Young SH, Wu SV, Rozengurt E. Ca2+-stimulated Ca2+ oscillations produced by the Ca2+-sensing receptor require negative feedback by protein kinase C. J Biol Chem 2002;277:46,871–46,876.

    CAS  Google Scholar 

  53. Liu KP, Russo AF, Hsiung SC, Adlersberg et al. Calcium receptor-induced serotonin secretion by parafollicular cells: role of phosphatidylinositol 3-kinase-dependent signal transduction pathways. J Neurosci 2003;23,2049–2057.

    CAS  Google Scholar 

  54. Gudermann T, Kalkbrenner F, Schultz G. Diversity and selectivity of receptor-G protein interaction. Ann Rev Pharmacol Toxicol 1996;37:429–459.

    Google Scholar 

  55. Kuhn B, Christel C, Wieland T, Schultz G, Gudermann T. G protein betagamma-subunits contribute to the coupling specificity of the beta2-adrenergic receptor to G(s). Naunym Schmied Arch Pharmacol 2002;365:231–241.

    Google Scholar 

  56. Clapham DF, Neer EJ. G protein beta gamma subunits Ann Rev Pharmacol Toxicol 1997;37:167–203.

    CAS  Google Scholar 

  57. Hausdorff WP, Bouvier M, O’Dowd BF, Irons GP, Caron MG, Lefkowitz RJ. Phosphorylation sites on two domains of the beta 2-adrenergic recptor are involved in distinct pathways of receptor desensitization. J Biol Chem 1 1989;264:12,657–12,665.

    CAS  Google Scholar 

  58. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature 2002;415:206–212.

    CAS  Google Scholar 

  59. Francesconi A, Duvoisin RM. Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain. Proc Natl Acad Sci USA 2000;97:6185–6190.

    CAS  Google Scholar 

  60. Bai M, Quinn S, Trivedi S, et al. Expression and characterization of inactivating and activating mutations in the human Ca2+ o-sensing receptor. J Biol Chem 1996;271:19,537–19,545.

    CAS  Google Scholar 

  61. Bai M, Janicic N, Trivedi S, et al. Markedly reduced activity of mutant calcium-sensing receptor with an inserted Alu element from a kindred with familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. J Clin Invest 1997;99:1917–1925.

    CAS  Google Scholar 

  62. Watanabe T, Bai M, Lane CR, et al. Familial Hypoparathyroidism: identification of a novel gain of function mutation in transmembrane domain 5 of the calcium-sensing receptor. J Clin Endocrinol Metab 1998;83:2497–2502.

    CAS  Google Scholar 

  63. D’Souza-Li L, Yang B, Canaff L, et al. Identification and functional characterization of novel calciumsensing receptor mutations in Familial Hypocalciuric Hypercalcemia and Autosomal Dominant Hypocalcemia. J Clin Endocrinol Metab 2002;87:1309–1318.

    CAS  Google Scholar 

  64. Hardie RC, Minke B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 1993;16:371–376.

    CAS  Google Scholar 

  65. Birnbaumer L, Zhu X, Jiang M, et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA 1996;93:195–202.

    Google Scholar 

  66. Harteneck G, Plant TD, Schultz G. From worm to man: three subfamilies of TRP channels. Trends Neurosci 2000;23:158–166.

    Google Scholar 

  67. Elliot AC. Recent developments in non-excitable cell calcium entry. Cell Calcium 2001;30:73–93.

    Google Scholar 

  68. Zhu X, Jiang M, Peyton M. Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 1996;85:661–671.

    CAS  Google Scholar 

  69. Zhu X, Jiang M, Birnbaumer L. Receptor-activated Ca2+ influx via human TRP3 stably expressed in Human Embryonic Kidney (HEK) 293 cells. J Biol Chem 1998;273:133–142.

    CAS  Google Scholar 

  70. Marks AR. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death. J Mol Cardiol 2001;33:615–624.

    CAS  Google Scholar 

  71. Werry TD, Wilkinson GF, Willars GB. Mechanisms of cross-talk between G protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem J 2003;374:281–296.

    CAS  Google Scholar 

  72. Katz A, Wu D, Simon MI. Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature (London) 1992;360:686–689.

    CAS  Google Scholar 

  73. Wu D, Katz A, Simon M. Activation of phospholipase C β2 by the α and βγ subunits of trimeric GTPbinding protein. Proc Natl Acad Sci USA 1993;90:5297–5301.

    CAS  Google Scholar 

  74. Jiang H, Kuang Y, Wu Y, Smrcka A, Simon MI, Wu D. Pertussis toxin-sensitve activation of phospholipase C by the C5a and fMet-Leu-Phe receptors. J Biol Chem 1996;271:13,430–13,434.

    CAS  Google Scholar 

  75. Stephens L, Jackson TR, Hawkins PT. Activation of phosphatidylinositol 4,5-bisphosphate supply by agonists and non-hydrolysable GTP analogues. Biochem J 1993;296:481–488.

    CAS  Google Scholar 

  76. Willars GB, Nahorski SR, Challis RA. Differential regulation of muscarinic acetylcholine receptorsensitive phosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem 1998;273:5037–5046.

    CAS  Google Scholar 

  77. Huang C, Handlogten ME, Miller RT. Parallel activation of phosphatidylinositol 4-kinase and phospholipase C by extracellular Ca2+-sensing receptor. J Biol Chem 2002;277:20,293–20,300.

    CAS  Google Scholar 

  78. Hajnoczky G, Gao E, Nomura T, Hoek JB, Thomas AP. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+ mobilization in permeabilized hepatocytes. Biochem J 1993;293:413–422.

    CAS  Google Scholar 

  79. Wojcikiewicz RJH, Luo SG. Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. J Pharmacol Exp Ther 1998;273:5670–5677.

    CAS  Google Scholar 

  80. MacKrill JJ. Protein-protein interactions in intracellular Ca2+-release channel function. Biochem J 1999;337:345–361.

    CAS  Google Scholar 

  81. Taylor CW, Marshall IC. Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem Sci 1992;17:403–407.

    CAS  Google Scholar 

  82. Gordienko DV, Bolton TB. Cross-talk between ryanodine receptors and IP3 receptors as a factor shaping spontaneous Ca2+-release events in rabbit portal vein myocytes. J Physiol 2002;542:743–762.

    CAS  Google Scholar 

  83. Taylor CW, Traynor D. Calcium and inositol trisphosphate receptors. J Membr Biol 1995;145:109–118.

    CAS  Google Scholar 

  84. Gu X, Spitzer NC. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 1995;375:784–787.

    CAS  Google Scholar 

  85. Spitzer NC, Olson E, Gu X. Spontaneous calcium transients regulate neuronal plasticity in developing neurons. J Neurobiol 1995;26:316–324.

    CAS  Google Scholar 

  86. Blondel O, Takeda J, Janssen H, Seino S, Bell GI. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3 expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem 1993;268:11,356–11,363.

    CAS  Google Scholar 

  87. Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci USA 1992;89:4265–4269.

    CAS  Google Scholar 

  88. Newton CL, Mignery GA, Sudhof TC. Co-expression in vertebrate tissues and cell lines of multiple inositol-1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem 1994;269:28,613–28,619.

    CAS  Google Scholar 

  89. Cardy TJA, Traynor D, Taylor CW. Differential regulation of types-1 and-3 inositol trisphosphate receptors by cytosolic Ca2+. Biochem J 1997;328:785–793.

    CAS  Google Scholar 

  90. Yoneshima H, Miyawaki A, Michikawa T, Furuichi T, Mikoshiba K. Ca2+ differentially regulates the ligand-affinity states of type 1 and type 3 inositol-1,4,5-trisphosphate receptors. Biochem J 1997;322:591–596.

    CAS  Google Scholar 

  91. Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacol 1995;34:1–26.

    CAS  Google Scholar 

  92. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol 1997;37:205–237.

    CAS  Google Scholar 

  93. Luo D, Broad LM, Bird GSJ, Putney JW. Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J Biol Chem 2001;276:5613–5621.

    CAS  Google Scholar 

  94. Dolmetsch RE, Lewis RS. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes. J Gen Physiol 1994;103:365–368.

    CAS  Google Scholar 

  95. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+response amplitude and duration. Nature 1997;386:855–858.

    CAS  Google Scholar 

  96. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 2001;294:333–339.

    CAS  Google Scholar 

  97. Xu L, Tripathy A, Pasek DA, Meissner G. Potential for pharmacology of ryanodine receptor/calcium release channels. Ann NY Acad Sci 1998;853:130–148.

    CAS  Google Scholar 

  98. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino C. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 1995;128:893–904.

    CAS  Google Scholar 

  99. Ogawa Y, Kurebayashi N, Murayama T. Putative roles of Type 3 ryanodine receptor isoforms. Trends Cardiovasc Med 2000;10:65–70.

    CAS  Google Scholar 

  100. Lohn M, Jessner W, Furstehau M, et al. Regulation of Ca2+ sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res 2001;89:1051–1057.

    CAS  Google Scholar 

  101. Rossi D, Sorrentino V. Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium 2002;32:307–319.

    CAS  Google Scholar 

  102. Bouchard R, Pattarini R, Geiger JD. Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 2003;69:391–418.

    CAS  Google Scholar 

  103. Kuemmerle JF, Makhlouf GM. Agonist-stimulated cyclic ADPribose. Endogenous modulator of Ca2+-induced Ca2+ release in intestinal longitudinal muscle. J Biol Chem 1995;270:25,488–25,494.

    CAS  Google Scholar 

  104. Sun L, Adebanjo OA, Moonga BS, et al. CD38/ADP-ribosyl cyclase: a new role in the regulation of osteoclasic bone resorption. J Cell Biol 1999;146:1161–1172.

    CAS  Google Scholar 

  105. Okamoto H. The CD38-cyclic ADP-ribose signaling system in insulin secretion. Mol Cell Biochem 1999;193:115–118.

    CAS  Google Scholar 

  106. Guse AH. Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phoaphate (NAADP): novel regulators of Ca2+-signaling and cell function. Curr Mol Med 2002;2:273–282.

    CAS  Google Scholar 

  107. Guse AH. Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR). Curr Mol Med 2004;4:239–248.

    CAS  Google Scholar 

  108. Misquitta CM, Mack DP, Grover AK. Sarco/endoplasmic reticulum Ca2+ (SERCA)-pumps: link to heart beats and calcium waves. Cell Calcium 1999;25:277–290.

    CAS  Google Scholar 

  109. Frank KF, Bolck B, Erdmann E, Schwinger RHG. Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation. Cardiovasc Res 2003;57:20–27.

    CAS  Google Scholar 

  110. Prestle J, Quinn FR, Smith GI. Ca2+-handling proteins and heart failure: novel molecular targets? Curr Med Chem 2003;10:967–981.

    CAS  Google Scholar 

  111. Ganitkevich VY. The role of mitochondria in cytoplasmic Ca2+ cycling. Expt Physiol 2003;88:91–97.

    CAS  Google Scholar 

  112. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 2000;28:285–296.

    CAS  Google Scholar 

  113. Huser J, Blatter LA, Sheu SS. Mitochondrial calcium in heart cells: beat to beat oscillations or slow integration of cytosolic transients? J Bioenerg Biomembr 2000;32:27–33.

    CAS  Google Scholar 

  114. Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS. Identification of a ryanodine receptor in rat mitochondria. J Biol Chem 2001;276:21,482–21,488.

    CAS  Google Scholar 

  115. Yano K, Zarain-Herzberg A. Sarcoplasmic reticulum calsequestrins: structural and functional properties. Mol cell Biochem 1994;135:61–70.

    CAS  Google Scholar 

  116. Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M. Calreticulin: one protein, one gene, many functions. Biochem J 1999;344:281–292.

    CAS  Google Scholar 

  117. Welsby PJ, Wang H, Wolfe JT, Colbran RJ, Johnson ML, Barrett PQ. A mechanism for the direct regulation of T-type calcium channels by Ca2+/calmodulin-dependent kinase II. J Neurosci 2003;23:10,116–10,121.

    CAS  Google Scholar 

  118. Wu Y, Kimbrough JT, Colbran TJ, Anderson ME. Calmodulin kinase is functionally targeted to the action potential plateau for regulation of L-type Ca2+-current in rabbit cardiomyocytes. J Physiol 2004;554:145–155.

    CAS  Google Scholar 

  119. Terentyev D, Viatchenko-Karpinski S, Gyyorke I, Volpe P, Williams SC, Gyorke S. Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: Mechanism for hereditary arrhythmia. Proc Natl Acad Sci USA 2003;100:11,759–11,764.

    CAS  Google Scholar 

  120. Strehler EE. Plasma membrane Ca2+ pumps and Na+/Ca2+ exchangers. Sem Cell Biol 1990;4:283–295.

    Google Scholar 

  121. Keeton TP, Burk SE, Shull GE. Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca2+-ATPase isoforms 1,2,3 and 4. J Biol Chem 1993;268:2740–2748.

    CAS  Google Scholar 

  122. Guerini D. The Ca2+ pumps and the Na+/Ca2+ exchangers. Biometals 1998;11:19–30.

    Google Scholar 

  123. Kip SN, Strehler EE. Vitamin D3 upregulates plasma membrane Ca2+-ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am J Physiol Renal Physiol 2004;286:F363–F369.

    CAS  Google Scholar 

  124. Reeves JP, Condrescu M, Chernaya G, Gardner JP. Na+/Ca2+ antiport in the mammalian heart. J Exp Biol 1994;196:375–388.

    CAS  Google Scholar 

  125. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 1999;79:763–854.

    CAS  Google Scholar 

  126. Smets I, Caplanusi A, Despa S, et al. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol 2004;286:F784–F794.

    CAS  Google Scholar 

  127. Rosker C, Graziani A, Lukas M, Eder et al. Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 2004;279:13,696–13,704.

    CAS  Google Scholar 

  128. Richard S, Leclerq F, Lamaire S, Piot C. Nargeot J. Ca2+ currents in compensated hypertrophy and heart failure. Cardiovasc Res 1998;37:300–311.

    CAS  Google Scholar 

  129. Beucklemann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992;85:1046–1055.

    Google Scholar 

  130. Pieske B, Posival H, Minani K, Just H, Hasenfuss G. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 1995;92:1169–1178.

    CAS  Google Scholar 

  131. Yashar PR, Fransna M, Frishman WH. The sodium-calcium ion membrane exchanger: physiologic significance and pharmacologic implications. J Clin Pharmacol 1998;38:393–401.

    CAS  Google Scholar 

  132. Stanton BA, Koeppen BM. Potassium, calcium and phosphate homeostasis. In: Berne RM, Levy MN, eds. Physiology, 4th ed, Mosby, St. Louis: 1998; pp. 744–762.

    Google Scholar 

  133. Karbach U. Paracellular calcium transport across the small intestine. J Nutr 1992;122:672–677.

    CAS  Google Scholar 

  134. Wasserman RH, Chandler JS, Meyer SA, et al. Intestinal calcium transport and calcium extrusion processes in the basolateral membrane. J Nutr 1992;122:662–671.

    CAS  Google Scholar 

  135. Johnson JA, Kumar R. Renal and intestinal calcium transport: roles of vitamin D and vitamin Ddependent calcium binding proteins. Semn Nephrol 1994;14:119–128.

    CAS  Google Scholar 

  136. Wasserman RH, Chandler JS, Meyer SA. Intestinal calcium transport and calcium extrusion process at the basolateral membrane. J Nutr 1992;122:662–671.

    CAS  Google Scholar 

  137. Wasserman RH, Fullmer CS. Vitamin D and intestinal calcium transport: facts, speculations and hypothesis. J Nutr 1995;125:1971S–1979S.

    CAS  Google Scholar 

  138. Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms and regulation. Physiol Rev; 1995;75:429–471.

    CAS  Google Scholar 

  139. Bindels RJM. Calcium handling by the mammalian kidney. J Exp Biol 1993;184:89–104.

    CAS  Google Scholar 

  140. Brunette MG, Leclerc M, Couchourel D, Mailloux J, Bourgeois Y. Characterization of three types of calcium channels in the luminal membrane of the distal nephron. Can J Physiol Pharmacol 2004;82:30–37.

    CAS  Google Scholar 

  141. Genuth S. Endocrine regulation of calcium and phosphate metabolism In: Berne RM, Levy MN, eds. Physiology, 4th ed, Mosby, St. Louis: 1998; pp. 848–871.

    Google Scholar 

  142. Meghji S. Bone remodeling. Br Dent J 1992;21:235–242.

    Google Scholar 

  143. Lundquist P. Odontoblast phosphate and calcium transport in dentinogenesis. Swd Dent J 2002;154:1–52.

    Google Scholar 

  144. Kameda T, Muno H, Yamada Y, et al. Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 1998;245:419–422.

    CAS  Google Scholar 

  145. Zaidi M, Moonga BS, Adebanjo OA. Novel mechanisms of calcium handling by the osteoclast: a review-hypothesis. Proc Assoc Am Physicians 1999;111:319–327.

    CAS  Google Scholar 

  146. Zaidi M, Moonga BS, Huang CL. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption. Biol Rev Camb Philos Soc 2004;79:79–100.

    Google Scholar 

  147. Kamath SG, Smith CH. Na+/Ca2+ exchange, Ca2+ binding and electrogenic Ca2+ transport in plasma membranes of human placental syncytiotrophoblast. Pediatr Res 1994;36:461–467.

    CAS  Google Scholar 

  148. Kamath SG, Haider N, Smith CH. ATP-dependent calcium transport and binding by plasma membrane of human placenta. Placenta 1994;15:147–155.

    CAS  Google Scholar 

  149. Hosking DJ. Calcium homeostasis in pregnancy. Clin Endocrinol 1996;45:1–6.

    CAS  Google Scholar 

  150. Kovacs CS, Lanske B, Hunzelman JL, Guo J, Karaplis AC, Kronenberg HM. Parathyroid hormonerelated peptide (PHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA 1996;93:15,233–15,238.

    CAS  Google Scholar 

  151. Lafond J, Leclerc M, Brunette MG. Characterization of calcium transport by basal plasma membranes from human placenta syncytiotrophoblast. J Cell Physiol 1991;148:17–23.

    CAS  Google Scholar 

  152. Brunette MG, Leclerc M. Ca2+ transport through the brush border membrane of human placenta syncytiotrophoblasts. Can J Physiol Pharmacol 1992;70:835–842.

    CAS  Google Scholar 

  153. Kamath SG, Kelley LK, Friedman AF, Smith CH. Transport and binding in calcium uptake by microvillous membrane of human placenta. Am J Physiol 1992;262:C789–C794.

    CAS  Google Scholar 

  154. Lafond J, Goyer-O’Reilly I, Laramee M, Simoneau L. Hormonal regulation and implication of cell signaling in calcium transfer by placenta. Endocrine 2001;14:285–294.

    CAS  Google Scholar 

  155. Kovacs CS, Chafe LL, Woodland ML, McDonald KR, Fudge NJ, Wookey PJ. Calcitropic gene expression suggests a role for the intraplacental yolk sac in maternal-fetal calcium exchange. Am J Physiol Endocrinol Metab 2002;282:E721–E732.

    CAS  Google Scholar 

  156. Kasznica JM, Petcu EB. Placental calcium pump: clinical-based evidence. Pediatr Pathol Mol Med 2003;22:223–227.

    CAS  Google Scholar 

  157. Moreau R, Simoneau L, Lafond J. Calcium fluxes in human trophoblast (BeWo) cells: calcium channels, calcium-ATPase, and sodium-calcium exchanger. Mol Reprod Dev 2003;64:189–198.

    CAS  Google Scholar 

  158. Strid H, Powell TL. ATP-Dependent Ca2+ transport is up-regulated during third trimester in human syncytiotrophoblast basal membranes. Pediatr Res 2000;48:58–63.

    CAS  Google Scholar 

  159. Strid H, Care A, Jansson T, Powell T. Parathyroid hormone-related peptide (38-94) amide stimulates ATP-dependent calcium transport in the basal membrane of the human syncytio-trophoblast. J Endocrinol 2002;175:517–524.

    CAS  Google Scholar 

  160. An BS, Chopi KC, Kang SK, Hwang WS, Jeung EB. Novel Calbindin-D(9k) protein as a useful biomarker for environmental estrogenic compounds in the uterus of immature rats. Reprod Toxicol 2003;17:311–319.

    CAS  Google Scholar 

  161. Krisenger J, Dann JL, Applegarth O, et al. Calbindin-D9k gene expression during the pereinatal period in the rat: correlation to estrogen receptor expression in uterus. Mol Cell Endocrinol 1993;97:61–69.

    Google Scholar 

  162. Henzl MT, Hapak RC, Likos JJ. Interconversion of the ligand arrays in the CD and EF sites of oncomodulin. Influence on Ca2+-binding affinity. Biochem 1998;37:9101–9111.

    CAS  Google Scholar 

  163. Belkacemi L, Simoneau L, Lafond J. Calcium-binding proteins: distribution and implication in mammalian placenta. Endocrine 2002;19:57–64.

    CAS  Google Scholar 

  164. Hershberger ME, Tuan RS. Placental 57-kDa Ca2+-binding protein: regulation of expression and function in trophoblast calcium transport. Dev Biol 1998;199:80–92.

    CAS  Google Scholar 

  165. Derfoul A, Lin FJ, Awumey EM, Kolodzeski T, Hall DJ, Tuan RS. Estrogenic endocrine disruptive components interfere with calcium handling and differentiation of human trophoblast cells. J Cell Biochem 2003;89:755–770.

    CAS  Google Scholar 

  166. Uerhaeghe J, Bouillon R. Calciotropic hormones during reproduction. J Steroid Biochem Mol Biol 1992;41:469–477.

    Google Scholar 

  167. Tanamura A, Nomura S, Kurauchi O, Furui T, Mizutani S, Tomoda Y. Purification and characterization of 1,25(OH)2D3 receptor from human placenta. J Obstet Gynaecol 1995;21:631–639.

    CAS  Google Scholar 

  168. Hahali A, Diaz L, Sanchez I, Garabedian M, Bourges H, Larrea F. Effects of IGF-I on 1,25-dihydroxyvitamin D3 synthesis by human placenta in culture. Mol Huma Reprod 1999;5:771–776.

    Google Scholar 

  169. Diaz L, Sanchez I, Avila E, Halhali A, Vilchis F, Larrea F. Identification of a 25-hydroxyvitamin D3 1α-hydroxylase gene transcription product in cultures of hyman syncytiotrophoblast cells. J Clin Endocrinol Metab 2000;85:2543–2549.

    CAS  Google Scholar 

  170. Jeung EB, Leung PC, Krisinger J. The human calbindin-D9k gene. Complete structure and implications on steroid hormone regulation. J Mol Biol 1994;235:1231–1238.

    CAS  Google Scholar 

  171. Farrugia W, de Gooyer T, Rice GE, Moseley JM, Wlodek ME. Parathyroid hormone (1–34) and parathyroid hormone-related protein (–34) stimulate calcium release from human syncytiotrophoblast basal membranes via a common receptor. J Endocrinol 2000;166:689–695.

    CAS  Google Scholar 

  172. Curtis NE, Thomas RJ, Gillespie MT, King RG, Rice GE, Wlodek ME. Parathyroid hormone-related protein (PTHrP) mRNA splicing and parathyroid hormone/PTHrP receptor mRNA expression in human placenta and fetal membrane. J Mol Endocrinol 1998;21:225–234.

    CAS  Google Scholar 

  173. Laramee M, Simoneau L, Lafond J. Phospholipase C axis is the preferential pathway leading to PKC activation following PTH or PTHrP stimulation in human term placenta. Life Sci 2002;72:215–225.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Awumey, E.M., Bukoski, R.D. (2006). Cellular Functions and Fluxes of Calcium. In: Weaver, C.M., Heaney, R.P. (eds) Calcium in Human Health. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-961-5_3

Download citation

Publish with us

Policies and ethics