Skip to main content

Strategies of Conditional Gene Expression in Myocardium

An Overview

  • Protocol
Molecular Cardiology

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 112))

Abstract

The use of specialized reporter genes to monitor real-time, tissue-specific transgene expression in animal models offers an opportunity to circumvent current limitations associated with the establishment of transgenic mouse mod els. The Cre-loxP and the tetracycline (Tet)-inducible systems are useful meth ods of conditional gene expression that allow spatial (cell-type-specific) and temporal (inducer-dependent) control. Most often, the α-myosin heavy chain (α-MHC) promoter is used in these inducible systems to restrict expression of reporter genes and transgenes to the myocardium. An overview of each induc ible system is described, along with suggested reporter genes for real-time, noninvasive imaging in the myocardium. Effective gene delivery of the induc ible gene expression system is carried out by lentiviral vectors, which offer high transduction efficiency, long-term transgene expression, and low immunogenicity. This chapter outlines the packaging of myocardium-specific in ducible expression systems into lentiviral vectors, in which a transgene and a reporter gene are transduced into cardiomyocytes. In doing so, transgene and reporter expression can be monitored/tracked with bioluminescence imaging (BLI) and positron emission tomography (PET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, C., Wani, M. A., Wight, D., Kopchick, J., and Stambrook, P. J. (1994) Reporter genes in transgenic mice. Transgenic Res. 3, 182–194.

    PubMed  CAS  Google Scholar 

  2. Reddi, P. P., Kallio, M., and Herr, J. C. (1999) Green fluorescent protein as a reporter for promoter analysis of testis-specific genes in transgenic mice. Meth ods Enzymol. 302, 272–284.

    CAS  Google Scholar 

  3. Weissleder, R. and Ntziachristos, V. (2003) Shedding light onto live molecular targets. Nat. Med. 9, 123–128.

    PubMed  CAS  Google Scholar 

  4. Chtarto, A., Bender, H. U., Hanemann, C. O., Kemp, T., Lehtonen, E., Levivier, M., et al. (2003) Tetracycline-inducible transgene expression mediated by a single AAV vector. Gene Ther. 10, 84–94.

    PubMed  CAS  Google Scholar 

  5. Hoess, R. H. and Abremski, K. (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc. Natl. Acad. Sci. USA 81, 1026–1029.

    PubMed  CAS  Google Scholar 

  6. Yao, F., Svensjo, T., Winkler, T., Lu, M., Eriksson, C., and Eriksson, E. (1998) Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum. Gene Ther. 9, 1939–1950.

    PubMed  CAS  Google Scholar 

  7. Rossi, F. M. and Blau, H. M.(1998) Recent advances in inducible gene expres sion systems. Curr. Opin. Biotechnol. 9, 451–456.

    PubMed  CAS  Google Scholar 

  8. Rossi, F. M., Guicherit, O. M., Spicher, A., Kringstein, A. M., Fatyol, K., Blakely, B. T., and Blau, H. M. (1998) Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat. Genet. 20, 389–393.

    PubMed  CAS  Google Scholar 

  9. Mizuguchi, H., Xu, Z. L., Sakurai, F., Mayumi, T., and Hayakawa, T. (2003) Tight positive regulation of transgene expression by a single adenovirus vector containing the rtTA and tTS expression cassettes in separate genome regions. Hum. Gene Ther. 14, 1265–1277.

    PubMed  CAS  Google Scholar 

  10. Sanbe, A., Gulick, J., Hanks, M. C., Liang, Q., Osinska, H., and Robbins, J. (2003) Reengineering inducible cardiac-specific transgenesis with an attenuated myosin heavy chain promoter. Circ. Res. 92, 609–616.

    PubMed  CAS  Google Scholar 

  11. Heger, J., Godecke, A., Flogel, U., Merx, M. W., Molojavyi, A., Kuhn-Velten, W. N., and Schrader, J. (2002) Cardiac-specific overexpression of inducible nitric oxide synthase does not result in severe cardiac dysfunction. Circ. Res. 90, 93–99.

    PubMed  CAS  Google Scholar 

  12. Okamoto, Y., Chaves, A., Chen, J., et al. (2001) Transgenic mice with cardiacspecific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction. Am. J. Pathol. 159, 639–650.

    PubMed  CAS  Google Scholar 

  13. Sohal, D. S., Nghiem, M., Crackower, M. A., et al. (2001) Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ. Res. 89, 20–25.

    PubMed  CAS  Google Scholar 

  14. Minamino, T., Gaussin, V., DeMayo, F. J., and Schneider, M. D. (2001) Induc ible gene targeting in postnatal myocardium by cardiac-specific expression of a hormone-activated Cre fusion protein. Circ. Res. 88, 587–592.

    PubMed  CAS  Google Scholar 

  15. Kubo, S. and Mitani, K. (2003) A new hybrid system capable of efficient lentiviral vector production and stable gene transfer mediated by a single helperdependent adenoviral vector. J. Virol. 77, 2964–2971.

    PubMed  CAS  Google Scholar 

  16. Johansen, J., Rosenblad, C., Andsberg, K., Moller, A., Lundberg, C., Bjorlund, A., and Johansen, T. E. (2002) Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Ther. 9, 1291–1301.

    PubMed  CAS  Google Scholar 

  17. Pacchia, A. L., Adelson, M. E., Kaul, M., Ron, Y., and Dougherty, J. P. (2001) An inducible packaging cell system for safe, efficient lentiviral vector produc tion in the absence of HIV-1 accessory proteins. Virology 282, 77–86.

    PubMed  CAS  Google Scholar 

  18. Kafri, T., van Praag, H., Gage, F. H., and Verma, I. M. (2000) Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521.

    PubMed  CAS  Google Scholar 

  19. Punzon, I., Criado, L. M., Serrano, A., Serrano, F., and Bernad, A. (2003) Highly efficient lentiviral-mediated human cytokine transgenesis on the NOD/scid back ground. Blood 103, 580–582.

    PubMed  Google Scholar 

  20. Tiscornia, G., Singer, O., Ikawa, M., and Verma, I. M. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small inter fering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848.

    PubMed  CAS  Google Scholar 

  21. Hamra, F. K., Gatlin, J., Chapman, K. M., Grellhesl, D. M., Garcia, J. V., Ham mer, R. E., and Garbers, D. L. (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc. Natl. Acad. Sci. USA 99, 14,931–14,936.

    PubMed  CAS  Google Scholar 

  22. Blasberg, R. G. and Gelovani, J. (2002) Molecular-genetic imaging: a nuclear medicine-based perspective. Mol. Imaging 1, 280–300.

    PubMed  CAS  Google Scholar 

  23. Blasberg, R. G. and Gelovani-Tjuvajev, J. (2002) In vivo molecular-genetic imaging. J. Cell Biochem. Suppl. 39, 172–183.

    PubMed  Google Scholar 

  24. Hoffmann, M. M. and Stoffel, W. (1996) Construction and functional character ization of recombinant fusion proteins of human lipoprotein lipase and apolipoprotein CII. Eur. J. Biochem. 237, 545–552.

    PubMed  CAS  Google Scholar 

  25. Peng, S., Zhou, J., and Frazer, I. H. (1999) Construction and production of fluo rescent papillomavirus-like particles. J. Tongji. Med. Univ. 19, 170–174, 180.

    PubMed  CAS  Google Scholar 

  26. Torbett, B. E. (2002) Reporter genes: too much of a good thing? J. Gene Med. 4, 478,479.

    Google Scholar 

  27. Kringstein, A. M., Rossi, F. M., Hofmann, A., and Blau, H. M. (1998) Graded transcriptional response to different concentrations of a single transactivator. Proc. Natl. Acad. Sci. USA 95, 13,670–13,675.

    PubMed  CAS  Google Scholar 

  28. Schuettengruber, B., Doetzlhofer, A., Kroboth, K., Wintersberger, E., and Seiser, C. (2003) Alternate activation of two divergently transcribed mouse genes from a bidirectional promoter is linked to changes in histone modification. J. Biol. Chem. 278, 1784–1793.

    PubMed  CAS  Google Scholar 

  29. Pauly, G. T., Hughes, S. H., and Moschel, R. C. (1991) A sectored colony assay for monitoring mutagenesis by specific carcinogen-DNA adducts in Escherichia coli. Biochemistry 30, 11,700–11,706.

    PubMed  CAS  Google Scholar 

  30. He, Q., Wang, D., Yang, X. P., Carretero, O. A., and LaPointe, M. C. (2001) Inducible regulation of human brain natriuretic peptide promoter in transgenic mice. Am. J. Physiol. Heart Circ. Physiol. 280, H368–376.

    PubMed  CAS  Google Scholar 

  31. LaPointe, M. C., Yang, X. P., Carretero, O. A., and He, Q. (2002) Left ventricu lar targeting of reporter gene expression in vivo by human BNP promoter in an adenoviral vector. Am. J. Physiol. Heart Circ. Physiol. 283, H1439–1445.

    PubMed  CAS  Google Scholar 

  32. Chen, X., Cui, Z., Zhang, F., Chang, W., Chen, L., and Liu, L. (2002) Angiotensin II and cAMP regulate AT(1)-mRNA expression in rat cardiomyocytes by transcriptional mechanism. Eur. J. Pharmacol. 448, 1–9.

    PubMed  CAS  Google Scholar 

  33. He, Q., Mendez, M., and LaPointe, M. C. (2002) Regulation of the human brain natriuretic peptide gene by GATA-4. Am. J. Physiol. Endocrinol. Metab. 283, E50–57.

    PubMed  CAS  Google Scholar 

  34. Laing, J. G., Tadros, P. N., Green, K., Saffitz, J. E., and Beyer, E. C. (1998) Proteolysis of connexin43-containing gap junctions in normal and heat-stressed cardiac myocytes. Cardiovasc. Res. 38, 711–718.

    PubMed  CAS  Google Scholar 

  35. Petrich, B. G., Molkentin, J. D., and Wang, Y. (2003) Temporal activation of c-Jun N-terminal kinase in adult transgenic heart via cre-loxP-mediated DNA recombination. FASEB J. 17, 749–751.

    PubMed  CAS  Google Scholar 

  36. Jenkins, D. E., Oei, Y., Hornig, Y. S., Yu, S. F., Dusich, J., Purchio, T., and Contag, P. R. (2003) Bioluminescent imaging (BLI) to improve and refine tradi tional murine models of tumor growth and metastasis. Clin. Exp. Metastasis 20, 733–744.

    PubMed  CAS  Google Scholar 

  37. Zhang, W., Purchio, A. F., Chen, K., Wu, J., Lu, L., Coffee, R., Contag, P. R., and West, D. B. (2003) A transgenic mouse model with a luciferase reporter for studying in vivo transcriptional regulation of the human CYP3A4 gene. Drug Metab. Dispos. 31, 1054–1064.

    PubMed  CAS  Google Scholar 

  38. Zhang, W., Contag, P. R., Madan, A., Stevenson, D. K., and Contag, C. H. (1999) Bioluminescence for biological sensing in living mammals. Adv. Exp. Med. Biol. 471, 775–784.

    PubMed  CAS  Google Scholar 

  39. Contag, P. R., Olomu, I. N., Stevenson, D. K., and Contag, C. H. (1998) Biolu minescent indicators in living mammals. Nat. Med. 4, 245–247.

    PubMed  CAS  Google Scholar 

  40. Contag, C. H., Spilman, S. D., Contag, P. R., et al. (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66, 523–531.

    PubMed  CAS  Google Scholar 

  41. Wu, J. C., Chen, I. Y., Sundaresan, G., et al. (2003) Molecular imaging of car diac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108, 1302–1305.

    PubMed  Google Scholar 

  42. Wu, J. C., Inubushi, M., Sundaresan, G., Schelbert, H. R., and Gambhir, S. S. (2002) Optical imaging of cardiac reporter gene expression in living rats. Circulation 105, 1631–1634.

    PubMed  Google Scholar 

  43. Ray, P., Wu, A. M., and Gambhir, S. S. (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res. 63, 1160–1165.

    PubMed  CAS  Google Scholar 

  44. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G., and Cormier, M. J. (1992) Primary structure of the Aequorea victoria green-fluorescent pro tein. Gene 111, 229–233.

    PubMed  CAS  Google Scholar 

  45. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are re quired to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94, 2122–2127.

    PubMed  CAS  Google Scholar 

  46. Prasher, D. C. (1995) Using GFP to see the light. Trends Genet. 11, 320–323.

    PubMed  CAS  Google Scholar 

  47. Chalfie,M.,Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    PubMed  CAS  Google Scholar 

  48. Yu, Y. A., Oberg, K., Wang, G., and Szalay, A. A. (2003) Visualization of mo lecular and cellular events with green fluorescent proteins in developing em bryos: a review. Luminescence 18, 1–18.

    PubMed  CAS  Google Scholar 

  49. Tavare, J. M., Fletcher, L. M., and Welsh, G. I. (2001) Using green fluorescent protein to study intracellular signalling. J. Endocrinol. 170, 297–306.

    PubMed  CAS  Google Scholar 

  50. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    PubMed  CAS  Google Scholar 

  51. Delagrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., and Youvan, D. C. (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotech nology 13, 151–154.

    CAS  Google Scholar 

  52. Ehrig, T., O/rsKane, D. J., and Prendergast, F. G. (1995) Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 367, 163–166.

    PubMed  CAS  Google Scholar 

  53. Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663,664.

    Google Scholar 

  54. Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.

    PubMed  CAS  Google Scholar 

  55. Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.

    PubMed  CAS  Google Scholar 

  56. Yang, T. T., Cheng, L., and Kain, S. R. (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent pro tein. Nucleic Acids Res. 24, 4592,4593.

    Google Scholar 

  57. Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C. C., and Kain, S. R. (1998) Generation of destabilized green fluorescent protein as a transcrip tion reporter. J. Biol. Chem. 273, 34,970–34,975.

    PubMed  CAS  Google Scholar 

  58. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90.

    PubMed  CAS  Google Scholar 

  59. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29,188–29,194.

    PubMed  CAS  Google Scholar 

  60. Terskikh, A. V., Fradkov, A. F., Zaraisky, A. G., Kajava, A. V., and Angres, B. (2002) Analysis of DsRed Mutants. Space around the fluorophore accelerates fluorescence development. J. Biol. Chem. 277, 7633–7636.

    PubMed  CAS  Google Scholar 

  61. Bevis, B. J., and Glick, B. S. (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83–87.

    PubMed  CAS  Google Scholar 

  62. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882.

    PubMed  CAS  Google Scholar 

  63. Arndt-Jovin, D. J., Robert-Nicoud, M., and Jovin, T. M. (1990) Probing DNA structure and function with a multi-wavelength fluorescence confocal laser mi croscope. J. Microsc. 157, 61–72.

    PubMed  CAS  Google Scholar 

  64. Lechleiter, J. D., Lin, D. T., and Sieneart, I. (2002) Multi-photon laser scanning microscopy using an acoustic optical deflector. Biophys. J. 83, 2292–2299.

    PubMed  CAS  Google Scholar 

  65. Mitsiades, C. S., Mitsiades, N. S., Bronson, R. T., et al. (2003) Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications. Cancer Res. 63, 6689–6696.

    PubMed  CAS  Google Scholar 

  66. Wack, S., Hajri, A., Heisel, F., et al. (2003) Feasibility, sensitivity, and reliabil ity of laser-induced fluorescence imaging of green fluorescent protein-express ing tumors in vivo. Mol. Ther. 7, 765–773.

    PubMed  CAS  Google Scholar 

  67. Hoffman, R. M. (2001) Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 30, 1016–1022, 1024–1026.

    PubMed  CAS  Google Scholar 

  68. Bennett, J., Duan, D., Engelhardt, J. F., and Maguire, A. M. (1997) Real-time, noninvasive in vivo assessment of adeno-associated virus-mediated retinal trans duction. Invest. Ophthalmol. Vis. Sci. 38, 2857–2863.

    PubMed  CAS  Google Scholar 

  69. Huang, Q., Shan, S., Braun, R. D., et al. (1999) Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat. Biotechnol. 17, 1033–1035.

    PubMed  CAS  Google Scholar 

  70. Jain, R. K., Munn, L. L., and Fukumura, D. (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276.

    PubMed  CAS  Google Scholar 

  71. Padera, T. P., Stoll, B. R., So, P. T., and Jain, R. K. (2002) Conventional and high-speed intravital multiphoton laser scanning microscopy of microvascula ture, lymphatics, and leukocyte-endothelial interactions. Mol. Imaging. 1, 9–15.

    PubMed  Google Scholar 

  72. Brown, E. B., Campbell, R. B., Tsuzuki, Y., Xu, L., Carmeliet, P., Fukumura, D., and Jain, R. K. (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning mi croscopy. Nat. Med. 7, 864–868.

    PubMed  CAS  Google Scholar 

  73. Tjuvajev, J. G., Finn, R., Watanabe, K., et al. (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095.

    PubMed  CAS  Google Scholar 

  74. Gambhir, S. S., Barrio, J. R., Wu, L., et al. (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J. Nucleic Med. 39, 2003–2011.

    CAS  Google Scholar 

  75. Gambhir, S. S., Barrio, J. R., Phelps, M. E., et al. (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission to mography. Proc. Natl. Acad. Sci. USA 96, 2333–2338.

    PubMed  CAS  Google Scholar 

  76. Brust, P., Haubner, R., Friedrich, A., et al. (2001) Comparison of [18F]FHPG and [124/125I]FIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression. Eur. J. Nucleic Med. 28, 721–729.

    CAS  Google Scholar 

  77. Tjuvajev, J. G., Doubrovin, M., Akhurst, T., et al. (2002) Comparison of radio labeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J. Nucleic Med. 43, 1072–1083.

    Google Scholar 

  78. Min, J. J., Iyer, M., and Gambhir, S. S. (2003) Comparison of [(18)F]FHBG and [(14)C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral in fection vs stable transfection. Eur. J. Nucl. Med. Mol. Imag. 30, 1547–1560.

    CAS  Google Scholar 

  79. Tjuvajev, J. G., Avril, N., Oku, T., et al. (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333–4341.

    PubMed  CAS  Google Scholar 

  80. Tjuvajev, J. G., Stockhammer, G., Desai, R., Uehara, H., Watanabe, K., Gansbacher, B., and Blasberg, R. G. (1995) Imaging the expression of trans fected genes in vivo. Cancer Res. 55, 6126–6132.

    PubMed  CAS  Google Scholar 

  81. Gambhir, S. S., Bauer, E., Black, M. E., et al. (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for im aging reporter gene expression with positron emission tomography. Proc. Natl. Acad. Sci. USA 97, 2785–2790.

    PubMed  CAS  Google Scholar 

  82. Cherry, S. R. and Gambhir, S. S. (2001) Use of positron emission tomography in animal research. Ilar. J. 42, 219–232.

    PubMed  CAS  Google Scholar 

  83. Pearson, T. A. (2002) New tools for coronary risk assessment: what are their advantages and limitations? Circulation 105, 886–892.

    PubMed  Google Scholar 

  84. Weber, D. A. and Ivanovic, M. (1999) Ultra-high-resolution imaging of small animals: implications for preclinical and research studies. J. Nucleic Cardiol. 6, 332–344.

    CAS  Google Scholar 

  85. Beanlands, R. (1996) Positron emission tomography in cardiovascular disease. Can. J. Cardiol. 12, 875–883.

    PubMed  CAS  Google Scholar 

  86. Park, J. B. (2001) Concurrent measurement of promoter activity and transfec tion efficiency using a new reporter vector containing both Photinus pyralis and Renilla reniformis luciferase genes. Anal. Biochem. 291, 162–166.

    PubMed  CAS  Google Scholar 

  87. Bonin, A. L., Gossen, M., and Bujard, H. (1994) Photinus pyralis luciferase: vectors that contain a modified luc coding sequence allowing convenient trans fer into other systems. Gene 141, 75–77.

    PubMed  CAS  Google Scholar 

  88. Gal, D., Weir, L., Leclerc, G., Pickering, J. G., Hogan, J., and Isner, J. M. (1993) Direct myocardial transfection in two animal models. Evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab. Invest. 68, 18–25.

    PubMed  CAS  Google Scholar 

  89. Wang, Y., Yu, Y. A., Shabahang, S., Wang, G., and Szalay, A. A. (2002) Renilla luciferase-Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals. Mol. Genet. Genomics 268, 160–168.

    PubMed  CAS  Google Scholar 

  90. Hakkila, K., Maksimow, M., Karp, M., and Virta, M. (2002) Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal. Biochem. 301, 235–242.

    PubMed  CAS  Google Scholar 

  91. de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.

    PubMed  Google Scholar 

  92. de Wet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1986) Cloning firefly luciferase. Methods Enzymol. 133, 3–14.

    PubMed  Google Scholar 

  93. de Wet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 7870–7873.

    PubMed  Google Scholar 

  94. Oshiro, M. (1998) Cooled CCD versus intensified cameras for low-light video-applications and relative advantages. Methods Cell Biol. 56, 45–62.

    PubMed  CAS  Google Scholar 

  95. Tuchin, V. V., Xu, X., and Wang, R. K. (2002) Dynamic optical coherence to mography in studies of optical clearing, sedimentation, and aggregation of im mersed blood. Appl. Opt. 41, 258–271.

    PubMed  CAS  Google Scholar 

  96. Rice, B. W., Cable, M. D., and Nelson, M. B. (2001) In vivo imaging of light-emitting probes. J. Biomed. Opt. 6, 432–440.

    PubMed  CAS  Google Scholar 

  97. Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F., and Atkins, J. F. (1998) A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486.

    PubMed  CAS  Google Scholar 

  98. Tromberg, B. J., Shah, N., Lanning, R., Cerussi, A., Espinoza, J., Pham, T., Svaasand, L., and Butler, J. (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2, 26–40.

    PubMed  CAS  Google Scholar 

  99. Contag, C. H., Contag, P. R., Mullins, J. I., Spilman, S. D., Stevenson, D. K., and Benaron, D. A. (1995) Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol. 18, 593–603.

    PubMed  CAS  Google Scholar 

  100. Mandl, S., Schimmelpfennig, C., Edinger, M., Negrin, R. S., and Contag, C. H. (2002) Understanding immune cell trafficking patterns via in vivo bioluminescence imaging. J. Cell Biochem. Suppl. 39, 239–248.

    PubMed  Google Scholar 

  101. Reynolds, J. S., Troy, T. L., Mayer, R. H., et al. (1999) Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol. 70, 87–94.

    PubMed  CAS  Google Scholar 

  102. Rehemtulla, A., Stegman, L. D., Cardozo, S. J., Gupta, S., Hall, D. E., Contag, C. H., and Ross, B. D. (2000)Rapid and quantitative assessment of cancer treat ment response using in vivo bioluminescence imaging. Neoplasia 2, 491–495.

    PubMed  CAS  Google Scholar 

  103. Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755.

    PubMed  CAS  Google Scholar 

  104. Sauer, B. and Henderson, N. (1988) Site-specific DNA recombination in mam malian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85, 5166–5170.

    PubMed  CAS  Google Scholar 

  105. Sternberg, N. and Hamilton, D. (1981) Bacteriophage P1 site-specific recombi nation. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486.

    PubMed  CAS  Google Scholar 

  106. Garcia, E. L. and Mills, A. A. (2002) Getting around lethality with inducible Cre-mediated excision. Semin. Cell. Dev. Biol. 13, 151–158.

    PubMed  CAS  Google Scholar 

  107. Zheng, B., Zhang, Z., Black, C. M., de Crombrugghe, B., and Denton, C. P. (2002) Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. Am. J. Pathol. 160, 1609–1617.

    PubMed  CAS  Google Scholar 

  108. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70,71.

    Google Scholar 

  109. Mao, X., Fujiwara, Y., and Orkin, S. H. (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl. Acad. Sci. USA 96, 5037–5042.

    PubMed  CAS  Google Scholar 

  110. Novak, A., Guo, C., Yang, W., Nagy, A., and Lobe, C. G. (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cremediated excision. Genesis 28, 147–155.

    PubMed  CAS  Google Scholar 

  111. Kellendonk, C., Tronche, F., Casanova, E., Anlag, K., Opherk, C., and Schutz, G. (1999) Inducible site-specific recombination in the brain. J. Mol. Biol. 285, 175–182.

    PubMed  CAS  Google Scholar 

  112. Ngan, E. S., Schillinger, K., DeMayo, F., and Tsai, S. Y. (2002) The mifepristone-inducible gene regulatory system in mouse models of disease and gene therapy. Semin. Cell. Dev. Biol. 13, 143–149.

    PubMed  CAS  Google Scholar 

  113. Kellendonk, C., Tronche, F., Monaghan, A. P., Angrand, P. O., Stewart, F., and Schutz, G. (1996) Regulation of Cre recombinase activity by the synthetic ste roid RU 486. Nucleic Acids Res. 24, 1404–1411.

    PubMed  CAS  Google Scholar 

  114. Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. (1996) Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10,887–10,890.

    PubMed  CAS  Google Scholar 

  115. Tsujita, M., Mori, H., Watanabe, M., Suzuki, M., Miyazaki, J., and Mishina, M. (1999) Cerebellar granule cell-specific and inducible expression of Cre recombinase in the mouse. J. Neurosci. 19, 10,318–10,323.

    PubMed  CAS  Google Scholar 

  116. Minamino, T., Gaussin, V., DeMayo, F. J., and Schneider, M. D. (2001) Induc ible gene targeting in postnatal myocardium by cardiac-specific expression of a hormone-activated Cre fusion. Protein Circ Res. 88, 587–592.

    CAS  Google Scholar 

  117. Kitayama, K., Abe, M., Kakizaki, T., et al. (2001) Purkinje cell-specific and inducible gene recombination system generated from C57BL/6 mouse ES cells. Biochem. Biophys. Res. Commun. 281, 1134–1140.

    PubMed  CAS  Google Scholar 

  118. Zhou, Z., Wang, D., Wang, X. J., and Roop, D. R. (2002) In utero activation of K5.CrePR1 induces gene deletion. Genesis 32, 191,192.

    Google Scholar 

  119. Wan, Y. and Nordeen, S. K. (2002) Identification of genes differentially regu lated by glucocorticoids and progestins using a Cre/loxP-mediated retroviral pro moter-trapping strategy. J. Mol. Endocrinol. 28, 177–192.

    PubMed  CAS  Google Scholar 

  120. Ghoumari, A. M., Dusart, I., El-Etr, M., Tronche, F., Sotelo, C., Schumacher, M., and Baulieu, E. E. (2003) Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc. Natl. Acad. Sci. USA 100, 7953–7958.

    PubMed  CAS  Google Scholar 

  121. Herceg, Z., Hulla, W., Gell, D., Cuenin, C., Lleonart, M., Jackson, S., and Wang, Z. Q. (2001) Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nat. Genet. 29, 206–211.

    PubMed  CAS  Google Scholar 

  122. Imai, T., Jiang, M., Chambon, P., and Metzger, D. (2001) Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc. Natl. Acad. Sci. USA 98, 224–228.

    PubMed  CAS  Google Scholar 

  123. Li, H., Wang, J., Wilhelmsson, H., Hansson, A., Thoren, P., Duffy, J., Rustin, P., and Larsson, N. G. (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc. Natl. Acad. Sci. USA 97, 3467–3472.

    PubMed  CAS  Google Scholar 

  124. Imai, T. (2003) Functional genetic dissection of nuclear receptor signalling in obesity, diabetes and liver regeneration using spatiotemporally controlled so matic mutagenesis in the mouse. Keio. J. Med. 52, 198–203.

    PubMed  CAS  Google Scholar 

  125. Badea, T. C., Wang, Y., and Nathans, J. (2003) A noninvasive genetic/pharma cologic strategy for visualizing cell morphology and clonal relationships in the mouse. J. Neurosci. 23, 2314–2322.

    PubMed  CAS  Google Scholar 

  126. Weber, P., Schuler, M., Gerard, C., Mark, M., Metzger, D., and Chambon, P. (2003) Temporally controlled site-specific mutagenesis in the germ cell lineage of the mouse testis. Biol. Reprod. 68, 553–559.

    PubMed  CAS  Google Scholar 

  127. Casanova, E., Fehsenfeld, S., Lemberger, T., Shimshek, D. R., Sprengel, R., and Mantamadiotis, T. (2002) ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34, 208–214.

    PubMed  CAS  Google Scholar 

  128. Guo, C., Yang, W., and Lobe, C. G. (2002) A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32, 8–18.

    PubMed  CAS  Google Scholar 

  129. Gu, G., Dubauskaite, J., and Melton, D. A. (2002) Direct evidence for the pan creatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457.

    PubMed  CAS  Google Scholar 

  130. Hayashi, S. and McMahon, A. P. (2002) Efficient recombination in diverse tis sues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318.

    PubMed  CAS  Google Scholar 

  131. Loonstra, A., Vooijs, M., Beverloo, H. B., et al. (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 9209–9214.

    PubMed  CAS  Google Scholar 

  132. Chiba, H., Chambon, P., and Metzger, D. (2000) F9 embryonal carcinoma cells engineered for tamoxifen-dependent Cre-mediated site-directed mutagenesis and doxycycline-inducible gene expression. Exp. Cell. Res. 260, 334–339.

    PubMed  CAS  Google Scholar 

  133. Indra, A. K., Li, M., Brocard, J., Warot, X., et al. (2000) Targeted somatic mu tagenesis in mouse epidermis. Horm. Res. 54, 296–300.

    PubMed  CAS  Google Scholar 

  134. Vallier, L., Mancip, J., Markossian, S., et al. (2001) An efficient system for conditional gene expression in embryonic stem cells and in their in vitro and in vivo differentiated derivatives. Proc. Natl. Acad. Sci. USA 98, 2467–2472.

    PubMed  CAS  Google Scholar 

  135. Fuhrmann-Benzakein, E., Garcia-Gabay, I., Pepper, M. S., Vassalli, J. D., and Herrera, P. L. (2000) Inducible and irreversible control of gene expression using a single transgene. Nucleic Acids Res. 28, E99.

    PubMed  CAS  Google Scholar 

  136. Li, M., Indra, A. K., Warot, X., Brocard, J., Messaddeq, N., Kato, S., Metzger, D., and Chambon, P. (2000) Skin abnormalities generated by temporally con trolled RXRalpha mutations in mouse epidermis. Nature 407, 633–636.

    PubMed  CAS  Google Scholar 

  137. Indra, A. K., Warot, X., Brocard, J., Bornert, J. M., Xiao, J. H., Chambon, P., and Metzger, D. (1999) Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327.

    PubMed  CAS  Google Scholar 

  138. Metzger, D., Clifford, J., Chiba, H., and Chambon, P. (1995) Conditional sitespecific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995.

    PubMed  CAS  Google Scholar 

  139. Schwenk, F., Kuhn, R., Angrand, P. O., Rajewsky, K., and Stewart, A. F. (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432.

    PubMed  CAS  Google Scholar 

  140. Schmidt, E. E., Taylor, D. S., Prigge, J. R., Barnett, S., and Capecchi, M. R. (2000) Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97, 13,702–13,707.

    PubMed  CAS  Google Scholar 

  141. Thyagarajan, B., Guimaraes, M. J., Groth, A. C., and Calos, M. P. (2000) Mam malian genomes contain active recombinase recognition sites. Gene 244, 47–54.

    PubMed  CAS  Google Scholar 

  142. Zhang, Y., Riesterer, C., Ayrall, A. M., Sablitzky, F., Littlewood, T. D., and Reth, M. (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548.

    PubMed  CAS  Google Scholar 

  143. Wunderlich, F. T., Wildner, H., Rajewsky, K., and Edenhofer, F. (2001) New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Ac ids Res. 29, E47.

    CAS  Google Scholar 

  144. Verrou, C., Zhang, Y., Zurn, C., Schamel, W. W., and Reth, M. (1999) Compari son of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol. Chem. 380, 1435–1438.

    PubMed  CAS  Google Scholar 

  145. Bruning, J. C., Michael, M. D., Winnay, J. N., et al. (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569.

    PubMed  CAS  Google Scholar 

  146. Wang, J., Wilhelmsson, H., Graff, C., et al. (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat. Genet. 21, 133–137.

    PubMed  CAS  Google Scholar 

  147. Larsson, N. G., Wang, J., Wilhelmsson, H., et al. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236.

    PubMed  CAS  Google Scholar 

  148. Agah, R., Frenkel, P. A., French, B. A., Michael, L. H., Overbeek, P. A.,and Schneider, M. D. (1997) Gene recombination in postmitotic cells. Targeted ex pression of Cre recombinase provokes cardiac-restricted, site-specific rearrange ment in adult ventricular muscle in vivo. J. Clin. Invest. 100, 169–179.

    PubMed  CAS  Google Scholar 

  149. Chen, J., Kubalak, S. W., and Chien, K. R. (1998) Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 125, 1943–1949.

    PubMed  CAS  Google Scholar 

  150. Yamamoto, A., Hen, R., and Dauer, W. T. (2001) The ons and offs of inducible transgenic technology: a review. Neurobiol. Dis. 8, 923–932.

    PubMed  CAS  Google Scholar 

  151. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    PubMed  CAS  Google Scholar 

  152. Ryding, A. D., Sharp, M. G., and Mullins, J. J. (2001) Conditional transgenic technologies. J. Endocrinol. 171, 1–14.

    PubMed  CAS  Google Scholar 

  153. Keyvani, K., Baur, I., and Paulus, W. (1999) Tetracycline-controlled expression but not toxicity of an attenuated diphtheria toxin mutant. Life Sci. 64, 1719–1724.

    PubMed  CAS  Google Scholar 

  154. Imhof, M. O., Chatellard, P., and Mermod, N. (2000) A regulatory network for the efficient control of transgene expression. J. Gene Med. 2, 107–116.

    PubMed  CAS  Google Scholar 

  155. Corbel, S. Y. and Rossi, F. M. (2002) Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Curr. Opin. Biotechnol. 13, 448–452.

    PubMed  CAS  Google Scholar 

  156. Lamartina, S., Roscilli, G., Rinaudo, C. D., et al. (2002) Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum. Gene Ther. 13, 199–210.

    PubMed  CAS  Google Scholar 

  157. Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., and Hillen, W. (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968.

    PubMed  CAS  Google Scholar 

  158. Yamamoto, A., Lucas, J. J., and Hen, R. (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington/rss disease. Cell 101, 57–66.

    PubMed  CAS  Google Scholar 

  159. Krestel, H. E., Mayford, M., Seeburg, P. H., and Sprengel, R. (2001) A GFP-equipped bidirectional expression module well suited for monitoring tetracycline-regulated gene expression in mouse. Nucleic Acids Res. 29, E39.

    PubMed  CAS  Google Scholar 

  160. Deuschle, U., Meyer, W. K., and Thiesen, H. J. (1995) Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 15, 1907–1914.

    PubMed  CAS  Google Scholar 

  161. Freundlieb, S., Schirra-Muller, C., and Bujard, H. (1999) A tetracycline con trolled activation/repression system with increased potential for gene transfer into mammalian cells. J. Gene Med. 1, 4–12.

    PubMed  CAS  Google Scholar 

  162. Zhu, Z., Ma, B., Homer, R. J., Zheng, T., and Elias, J. A. (2001) Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J. Biol. Chem. 276, 25, 222–25,229.

    CAS  Google Scholar 

  163. Zheng, T., Zhu, Z., Wang, Z., et al. (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase-and cathepsin-dependent emphy sema. J. Clin. Invest. 106, 1081–1093.

    PubMed  CAS  Google Scholar 

  164. Fishman, G. I., Kaplan, M. L., and Buttrick, P. M. (1994) Tetracycline-regulated cardiac gene expression in vivo. J. Clin. Invest. 93, 1864–1868.

    PubMed  CAS  Google Scholar 

  165. Passman, R. S. and Fishman, G. I. (1994) Regulated expression of foreign genes in vivo after germline transfer. J. Clin. Invest. 94, 2421–2425.

    PubMed  CAS  Google Scholar 

  166. Yu, Z., Redfern, C. S., and Fishman, G. I. (1996) Conditional transgene expres sion in the heart. Circ. Res. 79, 691–697.

    PubMed  CAS  Google Scholar 

  167. Shimabukuro, M., Ohneda, M., Lee, Y., and Unger, R. H. (1997) Role of nitric oxide in obesity-induced beta cell disease. J. Clin. Invest. 100, 290–295.

    PubMed  CAS  Google Scholar 

  168. Guslandi, M. (1998) Nitric oxide and inflammatory bowel diseases. Eur. J. Clin. Invest. 28, 904–907.

    PubMed  CAS  Google Scholar 

  169. Wong, M. L., Rettori, V., al-Shekhlee, A., et al. (1996) Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat. Med. 2, 581–584.

    PubMed  CAS  Google Scholar 

  170. Balligand, J. L., Ungureanu-Longrois, D., Simmons, W. W., et al. (1994) Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS ac tivity in single cardiac myocytes in vitro. J. Biol. Chem. 269, 27,580–27,588.

    PubMed  CAS  Google Scholar 

  171. de Belder, A. J., Radomski, M. W., Why, H. J., et al. (1993) Nitric oxide syn thase activities in human myocardium. Lancet 341, 84,85.

    Google Scholar 

  172. Haywood, G. A., Tsao, P. S., von der Leyen, et al. (1996) Expression of induc ible nitric oxide synthase in human heart failure. Circulation 93, 1087–1094.

    PubMed  CAS  Google Scholar 

  173. Lewis, N. P., Tsao, P. S., Rickenbacher, P. R., et al. (1996) Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dys function of the left ventricle. Circulation 93, 720–729.

    PubMed  CAS  Google Scholar 

  174. Nathan, C. (1997) Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 100, 2417–2423.

    PubMed  CAS  Google Scholar 

  175. Mungrue, I. N., Gros, R., You, X., et al. (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J. Clin. Invest. 109, 735–743.

    PubMed  CAS  Google Scholar 

  176. Dor, Y., Djonov, V., and Keshet, E. (2003) Induction of vascular networks in adult organs: implications to proangiogenic therapy. Ann. NY Ac ad. Sci. 995, 208–216.

    CAS  Google Scholar 

  177. Dor, Y., Djonov, V., Abramovitch, R., Itin, A., Fishman, G. I., Carmeliet, P., Goelman, G., and Keshet, E. (2002) Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947.

    PubMed  CAS  Google Scholar 

  178. Dor, Y., Camenisch, T. D., Itin, A., Fishman, G. I., McDonald, J. A., Carmeliet, P., and Keshet, E. (2001) A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development 128, 1531–1538.

    PubMed  CAS  Google Scholar 

  179. Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbert, H., and Bujard, H. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10,933–10,938.

    PubMed  CAS  Google Scholar 

  180. Mayford, M., Bach, M. E., Huang, Y. Y., Wang, L., Hawkins, R. D., and Kandel, E. R. (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 27 4, 1678–1683.

    Google Scholar 

  181. Vigna, E., Cavalieri, S., Ailles, L., Geuna, M., Loew, R., Bujard, H., and Naldini, L. (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentviral vectors. Mol. Ther. 5, 252–261.

    PubMed  CAS  Google Scholar 

  182. Corbel, S. Y. and Rossi, F. M. (2002) Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Curr. Opin. Biotechnol. 13, 448–452.

    PubMed  CAS  Google Scholar 

  183. Gould, D. J. and Favorov, P. (2003) Vectors for the treatment of autoimmune disease. Gene Ther. 10, 912–927.

    PubMed  CAS  Google Scholar 

  184. Lori, F., di Marzo Veronese, F., de Vico, A. L., Lusso, P., Reitz, M. S., Jr.,and Gallo, R. C. (1992) Viral DNA carried by human immunodeficiency virus type 1 virions. J. Virol. 66, 5067–5074.

    PubMed  CAS  Google Scholar 

  185. Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I. M., and Gage, F. H. (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649.

    PubMed  CAS  Google Scholar 

  186. Weinberg, J. B., Matthews, T. J., Cullen, B. R., and Malim, M. H. (1991) Pro ductive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med. 174, 1477–1482.

    PubMed  CAS  Google Scholar 

  187. Baekelandt, V., Eggermont, K., Michiels, M., Nuttin, B., and Debyser, Z. (2003) Optimized lentiviral vector production and purification procedure prevents im mune response after transduction of mouse brain. Gene Ther. 10, 1933–1940.

    PubMed  CAS  Google Scholar 

  188. Giannoukakis, N., Mi, Z., Gambotto, A., Eramo, A., Ricordi, C., Trucco, M., and Robbins, P. (1999) Infection of intact human islets by a lentiviral vector. Gene Ther. 6, 1545–1551.

    PubMed  CAS  Google Scholar 

  189. Thomas, C. E., Ehrhardt, A., and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358.

    PubMed  CAS  Google Scholar 

  190. Marshall, E. (1999) Gene therapy death prompts review of adenovirus vector. Science 286, 2244,2245.

    Google Scholar 

  191. Ferrari, F. K., Samulski, T., Shenk, T., and Samulski, R. J. (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234.

    PubMed  CAS  Google Scholar 

  192. Fisher, K. J., Choi, H., Burda, J., Chen, S. J., and Wilson, J. M. (1996) Recombi nant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 217, 11–22.

    PubMed  CAS  Google Scholar 

  193. Whittaker, G. R., Kann, M., and Helenius, A. (2000) Viral entry into the nucleus. Annu. Rev. Cell. Dev. Biol. 16, 627–651.

    PubMed  CAS  Google Scholar 

  194. Otto, E., Jones-Trower, A., Vanin, E. F., Stambaugh, K., Mueller, S. N., Ander son, W. F., and McGarrity, G. J. (1994) Characterization of a replication-com petent retrovirus resulting from recombination of packaging and vector sequences. Hum. Gene Ther. 5, 567–575.

    PubMed  CAS  Google Scholar 

  195. Chong, H., Starkey, W., and Vile, R. G. (1998) A replication-competent retrovirus arising from a split-function packaging cell line was generated by re combination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J. Virol. 72, 2663–2670.

    PubMed  CAS  Google Scholar 

  196. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W., and Luhrmann, R. (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82, 475–483.

    PubMed  CAS  Google Scholar 

  197. Meyer, B. E. and Malim, M. H. (1994) The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev. 8, 1538–1547.

    PubMed  CAS  Google Scholar 

  198. Bogerd, H. P., Fridell, R. A., Madore, S., and Cullen, B. R. (1995) Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory pro teins. Cell 82, 485–494.

    PubMed  CAS  Google Scholar 

  199. Fritz, C. C., Zapp, M. L., and Green, M. R. (1995) A human nucleoporin-like protein that specifically interacts with HIV. Rev. Nature 376, 530–533.

    CAS  Google Scholar 

  200. Pollard, V. W. and Malim, M. H. (1998) The HIV-1 Rev protein. Annu. Rev. Microbiol. 52, 491–532.

    PubMed  CAS  Google Scholar 

  201. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: con centration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    PubMed  CAS  Google Scholar 

  202. Iwakuma, T., Cui, Y., and Chang, L. J. (1999) Self-inactivating lentiviral vec tors with U3 and U5 modifications. Virology 261, 120–132.

    PubMed  CAS  Google Scholar 

  203. Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L.,and Trono, D. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880.

    PubMed  CAS  Google Scholar 

  204. Connolly, J. B. (2002) Lentiviruses in gene therapy clinical research. Gene Ther. 9, 1730–1734.

    PubMed  CAS  Google Scholar 

  205. Faust, E. A., Acel, A., Udashkin, B., and Wainberg, M. A. (1995) Human immu nodeficiency virus type 1 integrase stabilizes a linearized HIV-1 LTR plasmid in vivo. Biochem. Mol. Biol. Int. 36, 745–758.

    PubMed  CAS  Google Scholar 

  206. Woods, N. B., Muessig, A., Schmidt, M., et al. (2003) Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 101, 1284–1289.

    PubMed  CAS  Google Scholar 

  207. Kafri, T. (2004) Gene delivery by lentivirus vectors an overview. Methods Mol. Biol. 246, 367–390.

    PubMed  CAS  Google Scholar 

  208. Hofmann, A., Nolan, G. P., and Blau, H. M. (1996) Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190.

    PubMed  CAS  Google Scholar 

  209. Hill, C. P., Worthylake, D., Bancroft, D. P., Christensen, A. M., and Sundquist, W. I. (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc. Natl. Acad. Sci. USA 93, 3099–3104.

    PubMed  CAS  Google Scholar 

  210. Gamble, T. R., Yoo, S., Vajdos, F. F., et al. (1997) Structure of the carboxylterminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853.

    PubMed  CAS  Google Scholar 

  211. Schmalzbauer, E., Strack, B., Dannull, J., Guehmann, S., and Moelling, K. (1996) Mutations of basic amino acids of NCp7 of human immunodeficiency virus type 1 affect RNA binding in vitro. J. Virol. 70, 771–777.

    PubMed  CAS  Google Scholar 

  212. Huang, M., Orenstein, J. M., Martin, M. A., and Freed, E. O. (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69, 6810–6818.

    PubMed  CAS  Google Scholar 

  213. Kaplan, A. H., Manchester, M., and Swanstrom, R. (1994) The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J. Virol. 68, 6782–6786.

    PubMed  CAS  Google Scholar 

  214. Peliska, J. A. and Benkovic, S. J. (1992) Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258, 1112–1118.

    PubMed  CAS  Google Scholar 

  215. Li, X., Mukai, T., Young, D., Frankel, S., Law, P., and Wong-Staal, F. (1998) Transduction of CD34+ cells by a vesicular stomach virus protein G (VSV-G) pseudotyped HIV-1 vector. Stable gene expression in progeny cells, including dendritic cells. J. Hum. Virol. 1, 346–352.

    PubMed  CAS  Google Scholar 

  216. Katz, R. A. and Skalka, A. M. (1994) The retroviral enzymes. Annu. Rev. Biochem. 63, 133–173.

    PubMed  CAS  Google Scholar 

  217. Arya, S. K., Zamani, M., and Kundra, P. (1998) Human immunodeficiency virus type 2 lentivirus vectors for gene transfer: expression and potential for helper virus-free packaging. Hum. Gene Ther. 9, 1371–1380.

    PubMed  CAS  Google Scholar 

  218. Zemmel, R. W., Kelley, A. C., Karn, J., and Butler, P. J. (1996) Flexible regions of RNA structure facilitate co-operative Rev assembly on the Rev-response ele ment. J. Mol. Biol. 258, 763–777.

    PubMed  CAS  Google Scholar 

  219. Schambach, A., Wodrich, H., Hildinger, M., Bohne, J., Krausslich, H. G.,and Baum, C. (2000) Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol. Ther. 2, 435–445.

    PubMed  CAS  Google Scholar 

  220. Trono, D., Feinberg, M. B., and Baltimore, D. (1989) HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 59, 113–120.

    PubMed  CAS  Google Scholar 

  221. Clever, J. L. and Parslow, T. G. (1997) Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J. Virol. 71, 3407–3414.

    PubMed  CAS  Google Scholar 

  222. McBride, M. S. and Panganiban, A. T. (1996) The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of func tional hairpin structures. J. Virol. 70, 2963–2973.

    PubMed  CAS  Google Scholar 

  223. Reiser, J., Lai, Z., Zhang, X. Y., and Brady, R. O. (2000) Development of multigene and regulated lentivirus vectors. J. Virol. 74, 10,589–10,599.

    PubMed  CAS  Google Scholar 

  224. Verhoef, K., Marzio, G., Hillen, W., Bujard, H., and Berkhout, B. (2001) Strict control of human immunodeficiency virus type 1 replication by a genetic switch: Tet for Tat. J. Virol. 75, 979–987.

    PubMed  CAS  Google Scholar 

  225. Dugray, A., Geay, J. F., Foudi, A., et al. (2001) Rapid generation of a tetracycline-inducible BCR-ABL defective retrovirus using a single autoregulatory retroviral cassette. Leukemia 15, 1658–1662.

    PubMed  CAS  Google Scholar 

  226. Sato, N., Matsuda, K., Sakuma, C., Foster, D. N., Oppenheim, R. W.,and Yaginuma, H. (2002) Regulated gene expression in the chicken embryo by us ing replication-competent retroviral vectors. J. Virol. 76, 1980–1985.

    PubMed  CAS  Google Scholar 

  227. Regulier, E., Pereira de Almeida, L., Sommer, B., Aebischer, P., and Deglon, N. (2002) Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington/rss disease. Hum. Gene Ther. 13, 1981–1990.

    PubMed  CAS  Google Scholar 

  228. Wiznerowicz, M. and Trono, D. (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J. Virol. 77, 8957–8961.

    PubMed  CAS  Google Scholar 

  229. Koponen, J. K., Kankkonen, H., Kannasto, J., Wirth, T., Hillen, W., Bujard, H., and Yla-Herttuala, S. (2003) Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expres sion in vitro and in vivo. Gene Ther. 10, 459–466.

    PubMed  CAS  Google Scholar 

  230. Wang, Y., Krushel, L. A., and Edelman, G. M. (1996) Targeted DNA recombi nation in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl. Acad. Sci. USA 93, 3932–3936.

    PubMed  CAS  Google Scholar 

  231. Miwa, T., Koyama, T., and Shirai, M. (2000) Muscle specific expression of Cre recombinase under two actin promoters in transgenic mice. Genesis 26, 136–138.

    PubMed  CAS  Google Scholar 

  232. Araki, T., Shibata, M., Takano, R., et al. (2000) Conditional expression of antiapoptotic protein p35 by Cre-mediated DNA recombination in cardiomyocytes from loxP-p35-transgenic mice. Cell Death Differ. 7, 485–492.

    PubMed  CAS  Google Scholar 

  233. Gaussin, V., Van de Putte, T., Mishina, Y., et al. (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc. Natl. Acad. Sci. USA 99, 2878–2883.

    PubMed  CAS  Google Scholar 

  234. Stanley, E. G., Biben, C., Elefanty, A., et al. (2002) Efficient Cre-mediated dele tion in cardiac progenitor cells conferred by a 3’UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int. J. Dev. Biol. 46, 431–439.

    PubMed  CAS  Google Scholar 

  235. Iwatate, M., Gu, Y., Dieterle, T., et al. (2003) In vivo high-efficiency transcoronary gene delivery and Cre-LoxP gene switching in the adult mouse heart. Gene Ther. 10, 1814–1820.

    PubMed  CAS  Google Scholar 

  236. Bowman, J. C., Steinberg, S. F., Jiang, T., Geenen, D. L., Fishman, G. I.,and Buttrick, P. M. (1997) Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J. Clin. Invest. 100, 2189–2195.

    PubMed  CAS  Google Scholar 

  237. Redfern, C. H., Degtyarev, M. Y., Kwa, A. T., et al. (2000) Conditional expres sion of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc. Natl. Acad. Sci. USA 97, 4826–4831.

    PubMed  CAS  Google Scholar 

  238. Redfern, C. H., Coward, P., Degtyarev, M. Y., et al. (1999) Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat. Biotechnol. 17, 165–169.

    PubMed  CAS  Google Scholar 

  239. Suzuki, J., Shen, W. J., Nelson, B. D., et al. (2001) Absence of cardiac lipid accumulation in transgenic mice with heart-specific HSL overexpression. Am. J. Physiol. Endocrinol. Metab. 281, E857–866.

    PubMed  CAS  Google Scholar 

  240. Mungrue, I. N., Husain, M., and Stewart, D. J. (2002) The role of NOS in heart failure: lessons from murine genetic models. Heart Fail. Rev. 7, 407–422.

    PubMed  CAS  Google Scholar 

  241. Beggah, A. T., Escoubet, B., Puttini, S., et al. (2002) From the Cover: Revers ible cardiac fibrosis and heart failure induced by conditional expression of an antisense mRNA of the mineralocorticoid receptor in cardiomyocytes. Proc. Natl. Acad. Sci. USA 99, 7160–7165.

    PubMed  CAS  Google Scholar 

  242. Gao, M. H., Bayat, H., Roth, D. M., et al. (2002) Controlled expression of car diac-directed adenylylcyclase type VI provides increased contractile function. Cardiovasc. Res. 56, 197–204.

    PubMed  CAS  Google Scholar 

  243. Ouvrard-Pascaud, A. and Jaisser, F. (2003) Pathophysiological role of the mineralocorticoid receptor in heart: analysis of conditional transgenic models. Pflugers Arch. 445, 477–481.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

L. Heine, H., Leong, H.S., Rossi, F.M.V., McManus, B.M., Podor, T.J. (2005). Strategies of Conditional Gene Expression in Myocardium. In: Sun, Z. (eds) Molecular Cardiology. Methods in Molecular Medicine™, vol 112. Humana Press. https://doi.org/10.1007/978-1-59259-879-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-879-3_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-363-3

  • Online ISBN: 978-1-59259-879-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics