Skip to main content

Abstract

The concept of a biorefinery for higher-alcohol production is to integrate ethanol and methanol formation via fermentation and biomass gasification, respectively, with conversion of these simple alcohol intermediates into higher alcohols via the Guerbet reaction. 1-Butanol results from the selfcondensation of ethanol in this multistep reaction occurring on a single catalytic bed. Combining methanol with ethanol gives a mixture of propanol, isobutanol, and 2-methyl-1-butanol. All of these higher alcohols are useful as solvents, chemical intermediates, and fuel additives and, consequently, have higher market values than the simple alcohol intermediates. Several new catalysts for the condensation of ethanol and alcohol mixtures to higher alcohols were designed and tested under a variety of conditions. Reactions of methanol-ethanol mixtures gave as high as 100% conversion of the ethanol to form high yields of isobutanol with smaller amounts of 1-propanol, the amounts in the mixture depending on the starting mixture. The most successful catalysts are multifunctional with basic and hydrogen transfer components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dvornikoff, M. N. and Farrar, M. W. J. (1957), Org. Chem. 22, 540–542.

    Article  CAS  Google Scholar 

  2. Radlowski, C. A. (1994), US patent no. 5,364,979.

    Google Scholar 

  3. Mueller, G. (1998), US patent no. 5,777,183.

    Google Scholar 

  4. Hagen, G. P. (1992), US patent no. 5,159,125.

    Google Scholar 

  5. Vanderspurt, T. H. (1996), US patent no. 5,493,064.

    Google Scholar 

  6. Young, D. A. (1991), US patent no. 5,068,469.

    Google Scholar 

  7. Barger, P. T. (1996), US patent no. 5,559,275.

    Google Scholar 

  8. Matsuda, M. (1985), US patent no. 4,518,810.

    Google Scholar 

  9. Clark, R. T. (1976), US patent no. 3,972,952.

    Google Scholar 

  10. Yates, J. E. (1976), US patent no. 3,979,466.

    Google Scholar 

  11. Utamapanya, S., Klabunde, K. J., and Schlup, J. R. (1991), Am. Chem. Soc. 3, 175–181.

    CAS  Google Scholar 

  12. Parmaliana, A., Arena, F., Frusteri, F., and Glordano, N. J. (1990), Chem. Soc. Faraday Trans. 6(4), 2663–2669.

    Article  Google Scholar 

  13. Choudhary, V. R. and Pandit, M. Y. (1991), Appl. Catal. 71, 265–274.

    Article  CAS  Google Scholar 

  14. Ueda, W., Kuwabara, T., Ohshida, T., and Morikawa, Y. (1990), J. Chem. Soc. Chem. Commun. 1558–1559.

    Google Scholar 

  15. Fuchs, O. (1936), US patent no. 2,050,788.

    Google Scholar 

  16. Radlowski, C. A. and Hagen, G. P. (1992), US patent no. 5,095,156.

    Google Scholar 

  17. Radlowski, C. A., Hagen, G. P., Grimes, L. E., and Tatterson, D. F. (1994), US patent no. 5,364,979.

    Google Scholar 

  18. Radlo, wski, C. A. (1994), US patent no. 5,300,695.

    Google Scholar 

  19. Vanderspurt, T. H., Greaney, M. A., Leta, D. P., Koveal, R. J., Disko, M. M., Klaus, A. V., Behal, S. K., and Harris, R. B. (2000), US patent no. 6,034,141.

    Google Scholar 

  20. Vanderspurt, T. H. (1998), US patent no. 5,811,602.

    Google Scholar 

  21. Carlini, C., Di-Girolamo, M., Macinai, A., Marchionna, M., Noviello, M., Galletti, A. M. R., and Sbrana, G. (2003), J. Mol. Catal. A. Chem. 206, 409–418.

    Article  CAS  Google Scholar 

  22. Carlini, C., Macinai, A., Marchionna, M., Noviello, M., Galletti, A. M. R., and Sbrana, G. (2003), J. Mol. Catal. A. Chem. 200, 137–146.

    Article  CAS  Google Scholar 

  23. Klabunde, K. J., Stark, J., Kopper, O., Mohs, C., Park, D. G., Decker, S., Jiang, Y., Lagadic, I., and Zhang, D. (1996), J. Phys. Chem. 100, 12, 142–12,153.

    Google Scholar 

  24. Olson, E. S., Aulich, T. R., Sharma, R. K., and Timpe, R. C. (2003), Appl. Biochem. Biotechnol. 105–108, 843–851.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S. Olson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Olson, E.S., Sharma, R.K., Aulich, T.R. (2004). Higher-Alcohols Biorefinery. In: Finkelstein, M., McMillan, J.D., Davison, B.H., Evans, B. (eds) Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO. Biotechnology for Fuels and Chemicals. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-837-3_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-837-3_74

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9873-8

  • Online ISBN: 978-1-59259-837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics