Skip to main content

Abstract

Modern experimental electrophysiology began earlier this century with the explanation of the basis of the action potential by Hodgkin and Huxley in the squid giant axon, and clinical cardiac electrophysiology with the development of the electrocardiogram by Einthoven. The fields continued to diverge in two rather independent directions. The development of intracellular electrodes, the voltage clamp, and the single-channel patch clamp revealed the subcellular events that underlie cardiac excitability and automaticity. Meanwhile, arrhythmia mapping, devices, and clinical trials have defined the mechanisms of the more common human arrhythmias and assessed the efficacy of therapeutic interventions. The advent of molecular biology has been invaluable to the understanding of channel biophysics during the last decade; the relation of single-channel properties to clinically relevant electrophysiology has lagged behind. The promise of molecular electrophysiology as a unifying element in the field is only now becoming apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Bennett PB, Yazawa K, Makita N, George AL, Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995; 376: 683–685.

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E. Heart Disease: A Textbook of Cardiovascular Medicine, 5th ed. Philadelphia: WB Saunders, 1996; pp. 548–741.

    Google Scholar 

  • The Cardiac arrhythmia suppression trial (CAST) investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989; 321: 406–412.

    Article  Google Scholar 

  • Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmias: HERG mutations cause long QT syndrome. Cell 1995; 80: 795–803.

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Chien KR. Congenital long QT syndromes. Toward molecular dissection of arrhythmia substrates. Circulation 1995; 92: 2786–2789.

    Article  PubMed  CAS  Google Scholar 

  • Hille B. Ion Channels in Excitable Membranes, 2nd ed. Sakmann B, Neher E, eds. Sunderland MA: Sinauer Associates, 1992.

    Google Scholar 

  • Jiang C, Atkinson D, Towbon JA, et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet 1994; 8: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Johns DC, Nuss HB, Chiamvimonvat N, Ramza BM, Marban E, Lawrence JH. Adenovirus-mediated expression of a voltage-gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). J Clin Invest 1995; 96: 1152–1158.

    Article  PubMed  CAS  Google Scholar 

  • Keating MT, Sanguinetti MC. Molecular genetic insights into cardiovascular disease. Science 1996; 272: 681–685.

    Article  PubMed  CAS  Google Scholar 

  • Pongs O. Molecular biology of voltage-dependent potassium channels. Physiol Rev 1992; 72: S69–88.

    PubMed  CAS  Google Scholar 

  • Romano C. Congenital cardiac arrhythmia. Lancet 1965; 1: 658, 659.

    Google Scholar 

  • Sanguinette MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IK, potassium channel. Cell 1995; 81: 299–307.

    Article  Google Scholar 

  • Schwartz PJ, Locati EH, Napolitano C, Priori SG. The long QT syndrome. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia: WB Saunders, 1995; pp. 788–811.

    Google Scholar 

  • Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na* channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995; 92: 3381–3386.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Curran ME, Spector PS, Keating MT. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 1996; 93: 2208–2212.

    Article  PubMed  CAS  Google Scholar 

  • Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 1996; 379: 833–836.

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli GF, Beuckelmann DJ, Calkins HG, et al. Sudden cardiac death in heart failure: the role of abnormal repolarization. Circulation 1994; 90: 2534–2539.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Curran ME, Splawski E, et al. Positional cloning of a novel potassium channel gene: KVLQT 1 mutations cause cardiac arrhythmias. Nat Genet 1996; 12: 17–23.

    Article  PubMed  Google Scholar 

  • Ward OC. A new familial cardiac syndrome in children. J Irish Med Assoc 1964; 54: 103–106.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

London, B. (1998). Cardiac Arrhythmias. In: Jameson, J.L. (eds) Principles of Molecular Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-726-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-726-0_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6272-3

  • Online ISBN: 978-1-59259-726-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics