Skip to main content

ZD9331

Preclinical and Clinical Studies

  • Chapter
Antifolate Drugs in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Thymidylate synthase (TS) has been the target enzyme for intensive antifolate drug development for several years and specific inhibition of TS, and hence DNA synthesis, has been achieved with a range of quinazoline analogs of folic acid, including CB3717 (13) and its non-nephrotoxic successor, TomudexTM (ZD1694, raltitrexed) (46). The latter compound has recently been introduced in a number of counties for the treatment of advanced colorectal cancer and is reviewed by Hughes et al. and Beale et al. (see Chapters 6 and 7). ZD1694 is a polyglutamatable drug that depends on cellular uptake via a carrier-mediated, saturable mechanism (the reduced-folate carrier; RFC) (713). ZD1694 polyglutamates are significantly more potent TS inhibitors than the parent drug and retention of high-chain-length forms inside cells results in prolonged inhibition of TS in tumor cells grown in vitro and in vivo. Of more recent interest has been the development of water-soluble acidic, quinazoline-based TS inhibitors that lack FPGS substrate activity but retain high affmity for the RFC. Work from the group of F. Sirotnak (14) has provided evidence that compounds with favorable kinetic parameters for the RFC may offer a tumor-selective advantage, at least in murine models. Additionally, our own research demonstrated a clear potency advantage of compounds that use the RFC. Such compounds would be expected to be active against tumors expressing low FPGS or high folylpolyglutamyl hydrolase (FPGH) activity, both documented mechanisms of resistance in cell lines with acquired resistance to polyglutamatable antifolates (713); and give a different, and possibly more controllable, toxicity profile than ZD1694. Whereas examples of antifolates with these biochemical attributes already existed when we started the program, e.g., the water-soluble, nonpolyglutamatable inhibitors of DHFR, none have reached the stage of clinical evaluation (1517).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackman AL, Calvert AH. Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann Oncol. 1995; 6:871–881.

    PubMed  CAS  Google Scholar 

  2. Jones TR, Calvert AH, Jackman AL, Brown SJ, Jones M, Harrap KR. A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur J Cancer 1981; 17:11–19.

    PubMed  CAS  Google Scholar 

  3. Jackson RC, Jackman AL, Calvert AH. Biochemical effects of a quinazoline inhibitor of thymidylate synthetase, CB3717, on human lymphoblastoid cells. Biochem Pharmacol 1983; 32:3783–3790.

    Article  PubMed  CAS  Google Scholar 

  4. Jackman AL, Judson IR. The new generation of thymidylate synthase inhibitors in clinical study. Exp Opin Invest Drugs 1996; 5:719–736.

    Article  CAS  Google Scholar 

  5. Jackman AL, Farrugia DC, Gibson W, Kimbell R, Harrap KR, Stephens TC, Azab M, Boyle FT. ZD1694 (Tomudex): a new thymidylate synthase inhibitor with activity in colorectal cancer. Eur J Cancer 1995; 31A:1277–1282.

    Article  Google Scholar 

  6. Jackman AL, Gibson W, Brown M, Kimbell R, Boyle FT. The role of the reduced-folate carrier and metabolism to intracellular polyglutamates for the activity of ICI D1694. Adv Exptl Med Biol 1993; 339:265–276.

    Article  CAS  Google Scholar 

  7. Li WW, Waltham M, Tong W, Schweitzer BI, Bertino JR. Increased activity of y-glutamyl hydrolase in human sarcoma cell lines: a novel mechanism of intrinsic resistance to methotrexate, in Chemistry and Biology of Pteridines and Folates, Advances in Experimental Medicine and Biology vol. 338 (Ayling JE, Nair MG, Baugh CM, eds.) Plenum, New York, 1993, 635–638.

    Chapter  Google Scholar 

  8. Pizzorno G, Mini E, Coronnello M, McGuire JJ, Moroson BA, Cashmore AR, Dreyer RN, Lin JT, Mazzei T, Periti P, Bertino JR. Impaired polyglutamation of methotrexate as a cause of resistance in CCRF-CEM cells after short-term, high-dose treatment with this drug. Cancer Res 1988; 48:2149–2155.

    PubMed  CAS  Google Scholar 

  9. McCloskey DE, McGuire JJ, Russell CA, Rowan BG, Bertino JR, Pizzorno G, Mini E. Decreased folylpolyglutamate synthetase activity as a mechanism of methotrexate resistance in CCRF-CEM human leukemia sublines. J Biol Chem 1991; 266:6181–6187.

    PubMed  CAS  Google Scholar 

  10. Pavlovic M, Leffert JJ, Russello O, Bunni MA, Beardsley GP, Priest DG, Pizzorno G. Altered transport of folic acid and antifolates through the carrier-mediated reduced folate transport system in a human leukemia cell line resistant to (6R) 5,10-dideazatetrahydrofolic acid (DDATHF). In: (Ayling JE, Nair MG, Baugh CM, eds.) Chemistry and Biology of Pteridines and Folates, Advances in Experimental Medicine and Biology vol. 338 Plenum, New York, 1993, 775–778.

    Chapter  Google Scholar 

  11. Jackman AL, Kelland LR, Kimbell R, Brown M, Gibson W, Aherne GW, Hardcastle A, Boyle FT, Mechanisms of acquired resistance to the quinazoline thymidylate synthase inhibitor, ZD1694 (Tomudex) in one mouse and three human cell lines. Br J Cancer 1995; 71:914–924.

    Article  PubMed  CAS  Google Scholar 

  12. Takemura Y, Kobayashi H, Gibson W, Kimbell R, Miyachi H, Jackman AL. The influence of drug-exposure conditions on the development of resistance to methotrexate or ZD1694 in cultured human leukaemia cells. Int J Cancer. 1996; 66:29–36.

    Article  PubMed  CAS  Google Scholar 

  13. Rhee MS, Wang Y, Nair, MG, Galivan J. Acquisition of resistance to antifolates caused by enhanced y-glutamyl hydrolase activity. Cancer Res 1993; 53:2227–2230.

    PubMed  CAS  Google Scholar 

  14. Sirotnak FM, DeGraw JI, Moccio DM, Samuels LL, Goutas L. New folate analogues of the 10-deazaaminopterin series. Basis for structural design and biochemical and pharmacologic properties. Cancer Chemother Pharmacol 1984; 12:18–25.

    PubMed  CAS  Google Scholar 

  15. Galivan J, Inglese J, McGuire J, Nimec Z, Coward JK, y-fluoromethotrexate: synthesis and biological activity of a potent inhibitor of dihydrofolate reductase with greatly diminished ability to form poly—glutamate. Proc Natl Acad Sci USA 1985; 82:2598–2602.

    Article  PubMed  CAS  Google Scholar 

  16. McGuire JJ, Russell CA, Bolanowska WE, Freitag CM, Jones CS, Kalman TI, Biochemical and growth inhibition studies of methotrexate and aminopterin analogues containing a tetrazole ring in place of the g-carboxyl group. Cancer Res 1990; 50:1726–1731.

    PubMed  CAS  Google Scholar 

  17. Abraham A, Nair MG, McGuire JJ, Galivan J, Kisliuk RL, Vishnuvajjala. Antitumour efficacy of classical non-polyglutamylatable antifolates that inhibit dihydrofolate reductase, in Chemistry and Biology of Pteridines and Folates, Advances in Experimental Medicine and Biology vol. 338 (Ayling JE, Nair MG, Baugh CM, eds.) Plenum, New York, 1993, 663–666.

    Chapter  Google Scholar 

  18. Marsham PR, Jackman AL, Barker AJ, Boyle FT, Pegg SJ, Wardleworth JM, Kimbell R, O’Connor BM, Calvert AH, Hughes LR. Quinazoline antifolate thymidylate synthase inhibitors: replacement of glutamic acid in the C2-methyl series. J Med Chem 1995; 38:994–1004.

    Article  PubMed  CAS  Google Scholar 

  19. Bavetsias V, Jackman AL, Kimbell R, Gibson W, Boyle FT, Bisset GMF. Quinazoline antifolate thymidylate synthase inhibitors: g-linked L-D, D-D and D-L dipeptide analogues of 2-desamino-2methyl-N10-propargyl-5,8-dideazfolic acid (ICI 198583), JMed Chem 1995; 39:73–85.

    Article  Google Scholar 

  20. Wardleworth JM, Boyle FT, Barker RJ, Hennequin LF, Pegg SJ, Stephens TC, Kimbell R, Brown M, Jackman AL. ZD9331, the design and synthesis of a novel non-polyglutamatable TS inhibitor. Ann Oncol 1994; (suppl 5):247.

    Google Scholar 

  21. Boyle FT, Wardleworth JM, Hennequin LF, Kimbell R, Marsham PR, Stephens TC, Jackman AL. ZD9331—design of a novel non-polyglutamatable quinazoline-based inhibitor of thymidylate synthase. Proc Am Assoc Cancer Res 1994; 35:302.

    Google Scholar 

  22. Jackman, AL, Kimbell R, Brown M, Bisset GMF, Bavetsias V, Marsham P, Hughes LR, Boyle FT. Quinazoline-based thymidylate synthase inhibitors: relationship between structural modifications and polyglutamation. Anti-Cancer Drug Design 1995; 10:573–589.

    PubMed  CAS  Google Scholar 

  23. Jackman, AL, Kimbell R, Aherne GW, Brunton L, Jansen G Stephens TC, Smith MN, Wardleworth JM, Boyle FT. Cellular pharmacology and in vitro activity of a new anticancer agent ZD9331: a water soluble, nonpolyglutamatable quinazoline-based inhibitor of thymidylate synthase. Clin Cancer Res 1997; 3:911–921.

    PubMed  CAS  Google Scholar 

  24. Hughes, LR, Jackman, AL, Oldfield, J, Smith, RC, K. Burrows, KD, Marsham, P, Bishop, JAM, Jones, TR. O’Connor BM, Calvert AH. Quinazoline antifolate thymidyate synthase inhibitors: alkyl, substituted alkyl and aryl substituents in the C2 position. J Med Chem 1990; 33:3060–3078.

    Article  PubMed  CAS  Google Scholar 

  25. Montfort WR, Perry KM, Fauman EB, Finer-Moore JS, Maley GF, Hardy L, Maley F, Stroud RM. Structure, multiple site binding and segmented accommodation in thymidylate synthase on binding dUMP and an anti-folate. Biochemistry 1990; 29:6964–6976.

    Article  PubMed  CAS  Google Scholar 

  26. Matthews DA, Appelt K, Oatley SJ, Xuong NgH. Crystal structure of Escherichia coli thymidylate synthase containing bound 5-fluoro-2’deoxyuridylate and 10-prpoargyl-5,8-dideazafolate. J Mol Biol 1990; 214:923–936.

    Article  PubMed  CAS  Google Scholar 

  27. Kamb AJ, Finer-Moore J, Calvert AH, Stroud RM. Structural basis for recognition of polyglutamated folates by thymidylate synthase Biochemistry 1992; 31:9883–9890.

    Article  PubMed  CAS  Google Scholar 

  28. Stroud RM. personal communication.

    Google Scholar 

  29. Boyle FT, Matusiak ZS, Hughes LR, Slater AM, Stephens TC, Smith MN, Kimbell R, Jackman AL. Substituted-2-desamino-2-methyl-quinazolinones. A series of novel antitumour agents, in Chemistry and Biology of Pteridines and Folates, Advances in Experimental Medicine and Biology vol. 388 (Ayling JE, Nair MG, Baugh CM, eds.) Plenum, New York, 1993; 585–588.

    Chapter  Google Scholar 

  30. Sanghani PC, Jackman AL, Evans VR., Thornton T, Hughes L, Calvert AH, Moran RG, A strategy for the design of membrane-permeable folylpolyglutamate synthetase inhibitors: “bay region” -substituted 2-desamino-2-methyl-5,8-dideazafolate analogues. Mol Pharmacol 1994; 45:341–351.

    PubMed  CAS  Google Scholar 

  31. Marsham PR. Jackman AL, Oldfield J, Hughes LR, Thornton TJ, Bisset GMF, O’Connor BM, Bishop JAM, Calvert AH. Quinazoline antifolate thymidylate synthase inhibitors: benzoyl ring modifications in the C2-methyl series. J Med Chem 1990; 33:3072–3078.

    Article  PubMed  CAS  Google Scholar 

  32. Bavetsias V, Jackman AL, Kimbell R, Gibson W, Boyle FT, Bisset GMF. Quinazoline antifolate thymidylate synthase inhibitors: y-linked L-D, D-D and D-L dipeptide analogues of 2-desamino-2methyl-N10-propargyl-5,8-dideazfolic acid (ICI 198583). J Med Chem 1996; 39:73–85.

    Article  PubMed  CAS  Google Scholar 

  33. Wardleworth JM, Boyle FT, Barker RJ, Hennequin LF, Pegg SJ, Stephens TC, Kimbell R, Brown M, Jackman AL. ZD9331, the design and synthesis of a novel non-polyglutamatable TS inhibitor. Ann Oncol 1994; 5 (suppl 5):247.

    Google Scholar 

  34. Boyle FT, Wardleworth JM, Hennequin LF, Kimbell R, Marsham PR, Stephens TC, Jackman AL. ZD9331—design of a novel non-polyglutamatable quinazoline-based inhibitor of thymidylate synthase. Proc Am Assoc Cancer Res 1994; 35:302.

    Google Scholar 

  35. Webber SE, Bleckman TM, Attard J, Deal JD, Kalhardekar V, Welsh KM, et al. Design of thymidylate synthase inhibitors using protein crystal structures: the synthesis and biological evaluation of a novel class of 5-substituted quinazolinones. J Med Chem 1993; 36:733–746.

    Article  PubMed  CAS  Google Scholar 

  36. Webber S, Bartlett CA, Boritzki TJ, Hilliard JA, Howland EF, Johnston AL, Kosa M, Margosiak SA, Morse CA, Shetty BV. AG337, a novel lipophilic thymidylate synthase inhibitor: in vitro and in vivo preclinical studies. Clin Chemother Pharmacol 1996; 37:509–517.

    Article  CAS  Google Scholar 

  37. Jackman AL, Melin C, Brunton L, Kimbell R, Aherne W, Walton M. Some determinants of response to folate-based thymidylate synthase inhibitors in human colon and ovarian tumour cell lines. Proc Am Assoc Cancer Res. 1998; 39:434.

    Google Scholar 

  38. Aherne W, Hardcastle A, Kelland L, Jackman AL. The measurement of deoxyuridine (dNTP) pools by radioinmunoassay. Adv Exp Med Biol 1995; 370:801–804.

    Google Scholar 

  39. Stephens TC, Smith MN, Waterman SE, McCloskey ML, Jackman AL, Boyle FT. Use of murine L5178Y lymphoma thymidine kinase mutants for in vitro and in vivo antitumour efficacy evaluation of novel thymidine synthase inhibitors. Adv Exp Med Bio 1993; 338:589–592.

    Article  CAS  Google Scholar 

  40. Aherne GW, Ward E, Dobinson D, Hardcastle A, Jackman AL. Pharmacokinetics of abolus injection of ZD9331, a non-polyglutamated thymidylate synthase inhibitor. Proc Am Assoc Cancer Res 1996; 37:382.

    Google Scholar 

  41. Walton MI, Aherne GW, Hardcastle A, Mitchell F, Dobinson D, Boyle FT, Jackman AL. Effects of dose and route of administration of the novel, non-polyglutamatable thymidylate synthase inhibitor ZD9331 on the renal function in mice. Br J Cancer in press.

    Google Scholar 

  42. Ratain MJ, Cooper N, Smith R, Vogelzang NJ, Mani S, Shulman K, Lowe PG, Averbuch SD. Phase I study of ZD9331: a novel thymidylate synthase (TS) inhibitor Proc ASCO 1997; 16:A729.

    Google Scholar 

  43. Rees C, Judson I, Beale P, Mitchell F, Smith R, Mayne K, Averbuch S, Jackman A. Phase I trial of ZD9331, a non-polyglutamatable thymidylate synthase (TS) inhibitor given as a five day continuous infusion. Proc ASCO 1997; 16:A730.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boyle, F.T., Stephens, T.C., Averbuch, S.D., Jackman, A.L. (1999). ZD9331. In: Jackman, A.L. (eds) Antifolate Drugs in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-725-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-725-3_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4521-4

  • Online ISBN: 978-1-59259-725-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics