Skip to main content

Insulin Resistance and Dyslipidemia: Implications for Coronary Heart Disease Risk

  • Chapter
Insulin Resistance

Part of the book series: Contemporary Endocrinology ((COE,volume 12))

Abstract

Tissue resistance to insulin-stimulated glucose uptake and to insulin suppression of nonesterified fatty acid levels (NEFA) is related to numerous lipid and lipoprotein abnormalities that increase coronary heart disease (CHD) risk. This chapter will review recent advances in understanding these associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–1607.

    PubMed  CAS  Google Scholar 

  2. Krauss RM. The tangled web of coronary risk factors. Am J Med 1991; 90 (Suppl 2): 36S - 41S.

    PubMed  CAS  Google Scholar 

  3. Laws A, Reaven GM. Insulin resistance and coronary heart disease risk factors. Bailliere’s Clin Endocrinol Metab 1993; 4: 1063–1078.

    Google Scholar 

  4. Frayn KN. Insulin resistance and lipid metabolism. Curr Opin Lipidol 1993; 4: 197–204.

    CAS  Google Scholar 

  5. Reaven GM, Laws A. Insulin resistance, compensatory hyperinsulinemia and coronary heart disease. Diabetologia 1994; 37: 948–952.

    PubMed  CAS  Google Scholar 

  6. Despres J-P, Marette A. Relation of components of insulin resistance syndrome to coronary disease risk. Curr Opin Lipidol 1994; 5: 274–289.

    PubMed  CAS  Google Scholar 

  7. Taskinen M-R. Insulin resistance and lipoprotein metabolism. Curr Opin Lipidol 1995; 6: 153–160.

    PubMed  CAS  Google Scholar 

  8. Albrink MJ, Lavietes PH, Man EB. Vascular disease and serum lipids in diabetes mellitus: Observa tions over thirty years (1931–1961). Ann Intern Med 1963; 58: 305–323.

    PubMed  CAS  Google Scholar 

  9. West KM, Ahuja MMS, Bennett PH, Czyzyk A, Mateo de Acosta O, Fuller JH, Grab B, Grabauskas V, Jarrett RJ, Kosake K, Keen H, Krolewski AS, Miki E, Schliak B, Teuscher A, Watkins PJ, Strober JA. The role of circulating glucose and triglyceride concentrations and their interactions with other “risk factors” as determinants of arterial disease in nine diabetic population samples from the WHO multinational study. Diabetes Care 1983; 6: 361–369.

    PubMed  CAS  Google Scholar 

  10. Pyorala K, Laasko M, Uusitupa M. Diabetes and atherosclerosis: An epidemiologic view. Diabet Metab Rev 1987; 3: 463–524.

    CAS  Google Scholar 

  11. Ronnemaa T, Laakso M, Kallio V, Pyorala K, Marniemi J, Puuka P. Serum lipids, lipoproteins and apolipoproteins and the excessive occurrence of coronary heart disease in non-insulin-dependent diabetic patients. Am J Epidemiol 1989; 130: 632–645.

    PubMed  CAS  Google Scholar 

  12. Steiner G. The dyslipoproteinemias of diabetes. Atherosclerosis 1994; 110 (Suppl): S27 - S33.

    PubMed  CAS  Google Scholar 

  13. Bergstrom RW, Leonetti DL, Newell-Morris LL, Shuman WP, Wahl PW, Fujimoto WY. Association of plasma triglyceride and C-peptide with coronary heart disease in Japanese-American men with a high prevalence of glucose intolerance. Diabetologia 1990; 33, 489–496.

    PubMed  CAS  Google Scholar 

  14. Fontbonne A, Eschwege E, Cambien F, Richard J-L, Ducimetiere P, Thibult N, Warnet J-M, Claude J-R, Rosselin G-E. Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose tolerance or diabetes: Results from the 10-year follow-up of the Paris Prospective Study. Diabetologia 1989; 32, 300–304.

    PubMed  CAS  Google Scholar 

  15. Reckless JPD, Betteridge DJ, Wu P, Payne B, Galton DJ. High-density and low density lipoproteins and prevalence of vascular disease in diabetes mellitus. BMJ 1978; 1: 883–886.

    PubMed  CAS  Google Scholar 

  16. Welborn TA, Knuiman M, McCann V, Stanton K, Constable IJ. Clinical macrovascular disease in Caucasoid diabetic subjects: Logistic regression analysis of risk variables. Diabetologia 1984; 27: 568–573.

    PubMed  CAS  Google Scholar 

  17. Laakso M, Vourilainen E, Pyorala K, Sarlund H. Association of low HDL and HDL2 cholesterol with coronary heart disease in noninsulin-dependent diabetics. Arteriosclerosis 1985; 5: 653–658.

    PubMed  CAS  Google Scholar 

  18. Laws A, Marcus EB, Grove JS, Curb JD. Lipids and lipoproteins as risk factors for coronary heart disease in men with abnormal glucose tolerance: The Honolulu Heart Program J Intern Med 1993; 234: 471–478.

    CAS  Google Scholar 

  19. Goldschmid MG, Barrett-Connor E, Edelstein SL, Wingard DL, Cohn BA, Herman WH. Dyslipidemia and ischemic heart disease mortality among men and women with diabetes. Circulation 1994; 89: 991–997.

    PubMed  CAS  Google Scholar 

  20. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, Pedrinelli R, Brandi Geriatric Medicine 1990;6:849–863.

    Google Scholar 

  21. Laws A, Reaven GM. The effect of physical activity on age-related glucose intolerance. Clinics in Geriatric Medicine 1990;6:849–863.

    Google Scholar 

  22. Olefsky J, Crapo LA, Ginsberg H., Reaven GM. Metabolic effects of increased caloric intake in man. Metabolism 1975; 24: 495–503.

    PubMed  CAS  Google Scholar 

  23. Byrne CD, Wareham NJ, Brown DC, Clark PMS, Cox U, Day NE, Palmer DR, Wang TWM, Williams DRR, Hales CN. Hypertriglyceridemia in subjects with normal and abnormal glucose tolerance: relative contributions of insulin secretion, insulin resistance and suppression of plasma non-esterified fatty acids. Diabetologia 1994; 37: 889–896.

    PubMed  CAS  Google Scholar 

  24. Laws A, Hoen HM, Selby JV, Saad MF, Haffner SM, Howard BV. Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status: Relation to plasma triglyceride and apolipoprotein B concentrations. Arterioscl Thromb Vasc Biol 1997; 17: 64–71.

    PubMed  CAS  Google Scholar 

  25. Laws A, Stefanick ML, Reaven GM. Insulin resistance and hypertriglyceridemia in first-degree relatives of patients with NIDDM. J Clin Endocinol Metab 1989; 69: 343–347.

    CAS  Google Scholar 

  26. Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widen E, Schalin C, Groop L. Early metabolic defects in persons at increased risk for non-insulin dependent diabetes mellitus. N Engl J Med 1989; 321: 337–343.

    PubMed  CAS  Google Scholar 

  27. Ferrannini E, Buzzigoli G, Bonadonna R. Insulin resistance in essential hypertension. N Engl J Med. 1987; 317: 350–357.

    PubMed  CAS  Google Scholar 

  28. Shen D-C, Shieh S-M, Fuh MM-T, Wu D-A, Chen Y-DI., Reaven GM. Resistance to insulin-stimulated-glucose uptake in patients with hypertension. J Clin Endocrinol Metab 1988; 66: 580–583.

    PubMed  CAS  Google Scholar 

  29. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (Syndrome X). Diabetes 1992; 41: 715–722.

    PubMed  CAS  Google Scholar 

  30. Lee ET, Howard BV, Savage PJ, Cowan LD, Fabsitz RR, Oopik AJ, Yeh J, Go O, Robbins DC, Welty TK. Diabetes and impaired glucose tolerance in three American Indian populations aged 45–74. The Strong Heart Study. Diabetes Care 1995; 18: 599–610.

    PubMed  CAS  Google Scholar 

  31. McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337: 382–386.

    PubMed  CAS  Google Scholar 

  32. Laws A, Jeppesen JL, Maheux PC, Schaaf P, Chen Y-DI, Reaven GM. Resistance to insulin-stimulated glucose uptake and dyslipidemia in Asian Indians. Arterioscl Thromb 1994; 14: 917–922.

    PubMed  CAS  Google Scholar 

  33. Reaven GM, Hollenbeck CB, Chen Y-DI. Relationship between glucose tolerance, insulin secretion, and insulin action in non-obese individuals with varying degrees of glucose tolerance. Diabetologia 1989; 32: 52–55.

    PubMed  CAS  Google Scholar 

  34. Saad MF, Anderson RL, Laws A, Watanabe RM, et al. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Diabetes 1994; 43: 1114–1121.

    PubMed  CAS  Google Scholar 

  35. Abbott WGH, Lillioja S, Young AA, Zawadzki JK, Yki-Jarvinen H, Christin L, Howard BV. Relationships between plasma lipoprotein concentrations and insulin action in an obese hyperinsulinemic population. Diabetes 1987; 36: 897–904.

    PubMed  CAS  Google Scholar 

  36. Garg A, Helderman HJ, Koffler M, Ayuso R, Rosenstock J, Raskin P. Relationship between lipoprotein levels and in vivo insulin action in normal young white men. Metabolism 1988; 37: 982–987.

    PubMed  CAS  Google Scholar 

  37. Laakso M, Sarlund H, Mykkanen L. Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance. Arteriosclerosis 1990; 10: 223–231.

    PubMed  CAS  Google Scholar 

  38. Laws A, Reaven GM. Evidence for an independent relationship between insulin resistance and fasting plasma triglyceride and HDL-cholesterol concentrations. J Intern Med 1992; 23: 25–30.

    Google Scholar 

  39. Godsland IF, Crook D, Walton C, Wynn B, Oliver MF. Influence of insulin resistance, secretion, and clearance on serum cholesterol, triglycerides, lipoprotein cholesterol, and blood pressure in healthy men. Arterioscler Thromb 1992; 12: 1030–1035.

    PubMed  CAS  Google Scholar 

  40. Laws A, King A, Haskell W, Reaven GM. Relation of fasting plasma insulin concentration to high density lipoprotein cholesterol and triglyceride concentrations in men. Arterioscl Thromb 1991; 11: 1636–1642.

    PubMed  CAS  Google Scholar 

  41. Laws A, King A, Haskell W, Reaven GM. Metabolic and behavioral covariates of high-density lipoprotein cholesterol and triglyceride concentrations in postmenopausal women. J Amer Geriatr Soc 1993; 41: 1289–1294.

    CAS  Google Scholar 

  42. Havel RJ, Kane JP, Balasse EO, Segel N, Basso LV. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest I970; 49: 2017–2035.

    Google Scholar 

  43. Barter PJ, Nestel PJ, Carroll KF. Precursors of plasma triglyceride fatty acid in humans. Effects of glucose consumption, clofibrate administration and alcoholic fatty liver. Metabolism 1972; 21: 117–124.

    PubMed  CAS  Google Scholar 

  44. Barter PJ, Nestel PJ. Precursors of plasma triglyceride fatty acids in obesity. Metabolism 1973; 22: 779–785.

    PubMed  CAS  Google Scholar 

  45. Kissebah AH, Alfarsi S, Adams PW, Wynn V. Role of insulin resistance in adipose tissue and liver in the pathogenesis of endogenous hypertriglyceridaemia in man. Diabetologia 1976; 12: 563–571.

    PubMed  CAS  Google Scholar 

  46. Coppack SW, Evans RD, Fisher RM, Frayn KN, Gibbons GF, Humphreys ML, Kirk ML, Potts JL, Hockaday TDR. Adipose tissue metabolism in obesity: Lipase action in vivo before and after a mixed meal. Metabolism 1992; 41: 264–272.

    PubMed  CAS  Google Scholar 

  47. Wolfe RR, Peters EJ. Lipolytic response to glucose infusion in human subjects. Am J Physiol 1987; 252: E218 - E223.

    PubMed  CAS  Google Scholar 

  48. Pei D, Chen Y-DI, Hollenbeck CB, Bhargava R, Reaven GM. Relationship between insulin-mediated glucose disposal by muscle and adipose tissue lipolysis in healthy volunteers. J Clin Endocrinol Metab 1995; 80: 3368–372.

    PubMed  CAS  Google Scholar 

  49. Yki-Jarvinen H, Taskinen M-R. Interrelationships among insulin’s antilipolytic and glucoregulatory effects and plasma triglycerides in nondiabetic and diabetic patients with endogenous hypertriglyceridemia. Diabetes 1988; 37: 1271–1278.

    PubMed  CAS  Google Scholar 

  50. Roust LR, Jensen M. Postprandial free fatty acid kinetics are abnormal in upper body obesity. Diabetes 1993; 42: 1567–1573.

    PubMed  CAS  Google Scholar 

  51. Bierman EL, Dole VP, Roberts TN. An abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes 1957; 6: 475–479.

    PubMed  CAS  Google Scholar 

  52. Kashyap ML, Magill F, Rojas L, Hoffman MM. Insulin and non-esterified fatty acid metabolism in asymptomatic diabetics and atherosclerotic subjects. CM Journal. 1970; 102: 1165–1169.

    CAS  Google Scholar 

  53. Kissebah AH, Adams PW, Wynn V. Inter-relationships between insulin secretion and plasma free fatty acid and triglyceride transport kinetics in maturity onset diabetes and the effect of phenethylbiguanide (phenformin). Diabetologia 1974; 10: 119–130.

    PubMed  CAS  Google Scholar 

  54. Swislocki ALM, Chen Y-DI, Golay A, Chang M-O, Reaven GM. Insulin suppression of plasma-free fatty acid concentration in normal individuals and patients with Type 2 (non-insulin-dependent) diabetes. Diabetologia 1987; 30: 622–626.

    PubMed  CAS  Google Scholar 

  55. McKeigue PM, Laws A, Chen Y-DI, Marmot MG, Reaven GM. Relation of plasma triglyceride and apolipoprotein B levels to insulin-mediated suppression of nonesterified fatty acids: possible explanation for sex differences in lipoprotein pattern. Arterioscl Thromb 1993; 8: 1187–1192.

    Google Scholar 

  56. Hennig B, Shasby DM, Spector AA. Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers. Circ Res 1985; 57: 776–880.

    PubMed  CAS  Google Scholar 

  57. Laughton CW, Ruddle DL, Bedord CJ, Alderman EL. Sera containing elevated nonesterified fatty acids from patients with angiographically documented coronary atherosclerosis cause marked lipid accumulation in cultured human arterial smooth muscle-derived cells. Atherosclerosis 1988; 70: 233–246.

    PubMed  CAS  Google Scholar 

  58. Pullinger CR, North JD, Teng B-B, Rifici VA, Ronhild de Brito AE, Scott J. The apolipoprotein B gene is constitutively expressed in HepG2 cells: Regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA half-life. J Lipid Res 1989; 30: 1065–1077.

    PubMed  CAS  Google Scholar 

  59. Byrne CD, Brindle NPJ, Wang TWM, Hales CN. Interaction of non esterified fatty acid and insulin in control of triacylglycerol secretion by Hep G2 cells. Biochem J 1991; 280: 99–104.

    PubMed  CAS  Google Scholar 

  60. Byrne CD, Wang TWM, Hales CN. Control of Hep G2 cell triacylglycerol and apolipoprotein-B synthesis and secretion by polyunsaturated nonesterified fatty acids and insulin. Biochem J 1992; 299: 101–107.

    Google Scholar 

  61. Dixon JL, Ginsberg HN. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: Information obtained from cultured liver cells. J Lipid Res 1993; 34: 167–179.

    PubMed  CAS  Google Scholar 

  62. Sparks JD, Sparks CE. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochemica et Biophysica Acta 1994; 1215: 9–32.

    CAS  Google Scholar 

  63. Cianflone K, Dahan S, Monge JC, Sniderman AD. Pathogenesis of carbohydrate-induced hypertriglyceridemia using HepG2 cells as a model system. Arterioscler Thromb 1992; 12: 271–277.

    Google Scholar 

  64. Brinton EA, Eisenberg S, Breslo JL. Elevated high density lipoprotein cholesterol levels correlate with decreased apoA-I and apoA-II fractional catabolic rate in women. J Clin Invest 1989; 84: 262–269.

    PubMed  CAS  Google Scholar 

  65. Brinton EA, Eisenberg S, Breslow JL. Human HDL cholesterol levels are determined by ApoA-I Fractional catabolic rate, which correlates inversely with estimates of HDL particle size: Effects of gender, hepatic and lipoprotein lipases, triglyceride and insulin levels, and body fat distribution. Arterioscler Thromb 1994; 14: 707–720.

    PubMed  CAS  Google Scholar 

  66. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: A method quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214 - E219.

    PubMed  CAS  Google Scholar 

  67. Shen SW, Reaven GM, Farquhar JW. Comparison of impedance to insulin-mediated glucose uptake in normal subjects and in subjects with latent diabetes. J Clin Invest 1979; 49: 2151–2160.

    Google Scholar 

  68. Barakat HA, Carpenter JW, McLendon VD, Khazanie P, Leggett N, Heath J, Marks R. Influence of obesity, impaired glucose tolerance and NIDDM on LDL structure and composition. Possible link between hyperinsulinemia and atherosclerosis. Diabetes 1990; 39: 1527–1533.

    PubMed  CAS  Google Scholar 

  69. Bruce R, Godsland I, Walton C, Cook D, Wynn V. Associations between insulin sensitivity, and free fatty acid and triglyceride metabolism independent of uncomplicated obesity. Metabolism 1994; 43: 1275–1281.

    PubMed  CAS  Google Scholar 

  70. Reaven GM, Chen Y-DI, Jeppesen J, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense, low density lipoprotein particles. J Clin Invest 1993; 92, 141–146.

    PubMed  CAS  Google Scholar 

  71. Selby JV, Austin MA, Newman B, Zhang D, Quesenberry CO, Mayer EJ, Krauss RM. LDL subclass phenotypes and the insulin resistance syndrome in women. Circulation 1993; 88: 381–387.

    PubMed  CAS  Google Scholar 

  72. Katzel LI, Kraus RM, Goldberg AP. Relations of plasma TG and HDL-C concentrations to body composition and plasma insulin levels are altered in men with small LDL particles. Arterioscler Thromb 1994; 14: 1121–1128.

    PubMed  CAS  Google Scholar 

  73. Tan KCB, Cooper MB, Ling KLE, Griffin BA, Freeman DJ, Packard CJ, Shepherd J, Hales CN, Betteridge DJ. Fasting and postprandial determinants for the occurrence of small dense LDL species in non-insulin-dependent diabetic patients with and without hypertriglyceridaemia: the involvement of insulin, insulin precursor species and insulin resistance. Atherosclerosis. 1995; 113: 273–287.

    PubMed  CAS  Google Scholar 

  74. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willet WC, Krauss RM. Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–1921.

    PubMed  CAS  Google Scholar 

  75. Steiner G. Hyperinsulinaemia and hypertriglyceridaemia. J Intern Med 1994; 236 (Suppl 736): 23–26.

    CAS  Google Scholar 

  76. Durrington PN, Newton RS, Weinstein DB, Steinberg D. Effects of insulin and glucose on very low density lipoprotein triglyceride secretion by rat hepatocytes. J Clin Invest 1982; 70: 63–73.

    PubMed  CAS  Google Scholar 

  77. Patsch W, Franz S, Schonfield G. Role of insulin in lipoprotein secretion by cultured rat hepatocytes. J Clin Invest 1983; 71: 1161–1174.

    PubMed  CAS  Google Scholar 

  78. Bartlett SM, Gibbons GF. Short-and longer-term regulation of very low density lipoprotein secretion by insulin, dexamethasone and lipogenic substrates in cultured hepatocytes. A biphasic effect of insulin. Biochem J 1988; 249: 37–43.

    PubMed  CAS  Google Scholar 

  79. Farquhar JW, Frank A, Gross RC, Reaven GM. Glucose, insulin and triglyceride responses to high and low carbohydrate diets in man. J Clin Invest 1966; 45: 1648–1656.

    PubMed  CAS  Google Scholar 

  80. Tobey TA, Greenfield M, Kraemer F, Reaven GM. Relationship between insulin resistance, insulin secretion, very low density lipoprotein kinetics and plasma triglyceride levels in normotriglyceridemic man. Metabolism 1981; 30: 165–171.

    PubMed  CAS  Google Scholar 

  81. Kazumi T, Vranic M, Steiner G. Triglyceride kinetics: effects of dietary glucose, sucrose, or fructose alone or with hyperinsulinemia. Am J Physiol 1986; 250: E325 - E330.

    PubMed  CAS  Google Scholar 

  82. Steiner G, Haynes FJ, Yoshina G, Vranic M. Hyperinsulinemia and in vivo very-low-density lipoprotein-triglyceride kinetics. Am J Physiol 1982; 246: E187 - E192.

    Google Scholar 

  83. Reaven GM, Mondo CE. Effect of in vivo plasma insulin levels on the relationship between perfusate free fatty acid concentration and triglyceride secretion by perfused rat livers. Horm Metabol Res 1984; 16: 230–232.

    CAS  Google Scholar 

  84. Reaven GM, Hill DB, Gross RC, Farquhar JW. Kinetics of triglyceride turnover of very low density lipoproteins of human plasma. J Clin Invest 1965; 44: 1826–1832.

    PubMed  CAS  Google Scholar 

  85. Wolf G. Nutritional and hormonal regulation of fatty acid synthase. Nutr Rev 1996; 54: 22–27.

    Google Scholar 

  86. Wakil SJ, Stoops JK, Joshi VC. Fatty acid synthesis and its regulation. Ann Rev Biochem. 1983; 52: 537–579.

    PubMed  CAS  Google Scholar 

  87. Paulauskis JD, Sul HS. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J Biol Chem 1989; 264: 574–577.

    PubMed  CAS  Google Scholar 

  88. Assimacopoulos-Jeannet F, Brichard S, Rencurel F, Cusin I, Jeanrenaud B. In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism 1995; 44: 228–233.

    PubMed  CAS  Google Scholar 

  89. Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 1996; 97: 2081–2091.

    PubMed  CAS  Google Scholar 

  90. Reaven GM, Greenfield MS. Diabetic hypertriglyceridemia: Evidence for three clinical syndromes. Diabetes 1981; 30 (Suppl 2): 66–75.

    PubMed  CAS  Google Scholar 

  91. Deckelbaum RJ, Granot E, Oschry Y, Rose L, Eisenberg S. Plasma triglyceride determines structure-composition in low and high density lipoproteins. Arteriosclerosis I984; 4: 225–231.

    Google Scholar 

  92. Eisenberg S, Gavish D, Oschry Y, Fainaru M, Deckelbaum RJ. Abnormalities in very low, low, and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with Bezafibrate treatment. J Clin Invest 1984; 74: 470–482.

    PubMed  CAS  Google Scholar 

  93. Jeppesen J, Hollenbeck CB, Zhou M-Y, Coulston AM, Jones C, Chen Y-DI, Reaven GM. Relation between insulin resistance, hyperinsulinemia, postheparin plasma lipoprotein lipase activity and postprandial lipemia. Arterioscl Thromb Vasc Biol 1995; 15: 320–324.

    PubMed  CAS  Google Scholar 

  94. Cavallero E, Dachet C, Neufcour D, Wirquin E, Math D, Jacotot B. Postprandial amplification of lipoprotein abnormalities in controlled Type II diabetic subjects: Relationship to postprandial lipemia and C-peptide/glucagon levels. Metabolism 1994; 43: 270–278.

    CAS  Google Scholar 

  95. Karpe F, Olivecrona T, Walldius G, Hamsten A. Lipoprotein lipase in plasma after an oral fat load: relation to free fatty acids. J Lipid Res 1992; 33: 975–984.

    PubMed  CAS  Google Scholar 

  96. Peterson J, Bihain BE, Bengtsson-Olivecrona G, Deckelbaum RJ, Carpentier YA, Olivecrona T. Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proc Natl Acad Sci USA 1990; 87: 909–913.

    PubMed  CAS  Google Scholar 

  97. Saxena U, Witte LD, Goldberg IJ. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem 1989; 264: 4349–4355.

    PubMed  CAS  Google Scholar 

  98. Lithell H, Jacobs I, Vessby JB, Hellsing K, Karlsson J. Decrease of lipoprotein lipase activity in skeletal muscle in man during a short-term carbohydrate-rich dietary regime. With special reference to HDLcholesterol, apolipoprotein and insulin concentrations. Metabolism 1982; 31: 994–998.

    PubMed  CAS  Google Scholar 

  99. Pollare T, Vessby B, Lithell H. Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Arterioscl Thromb 1991; 11: 1192–1203.

    PubMed  CAS  Google Scholar 

  100. Baynes C, Henderson AD, Amyaoku V, Richmond W, Hughes CL, Johnston DG, Elkeles RS. The role of insulin insensitivity and hepatic lipase in the dyslipidaemia of Type 2 diabetes. Diabetic Med 1991; 8: 560–566.

    PubMed  CAS  Google Scholar 

  101. Maheux P, Axhar S, Kern PA, Chen Y-DI, Reaven GM. Relationship between insulin-mediated glucose disposal and regulation of plasma and adipose tissue lipoprotein lipase. Diabetologia 1997; 40: 850–858.

    Google Scholar 

  102. Kiens B, Lithell H, Mikines KJ, Richter EA. Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J Clin Invest 1989; 84: 1124–1129.

    PubMed  CAS  Google Scholar 

  103. Potts JL, Coppack SW, Fisher RM, Humphreys SM, Gibbons GF, Frayn KN. Impaired postprandial clearance of triacylglycerol-rich lipoproteins in adipose tissue in obese subjects. Am J Physiol 1995; 268: E588 - E594.

    PubMed  CAS  Google Scholar 

  104. Brunzell JD, Hazzard WR, Porte D Jr, Bierman EL. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest 1973; 52: 1578–1585.

    PubMed  CAS  Google Scholar 

  105. Karpe F, Hultin M. Endogenous triglyceride-rich lipoproteins accumulate in rat plasma when competing with a chylomicron-like triglyceride emulsion for a common lipolytic pathway. J Lipid Res 1995; 36: 1557–1566.

    PubMed  CAS  Google Scholar 

  106. Zilversmit, DB. Atherogenesis: A postprandial phenomenon. Circulation 1979; 60: 473–485.

    PubMed  CAS  Google Scholar 

  107. Havel RJ. Postprandial hyperlipidemia and remnant lipoproteins. Curr Opin Lipidol 1994; 5: 102–109.

    PubMed  CAS  Google Scholar 

  108. Patsch JR, Miesenbock G, Hopferwieser T, Muhlberger V, Knapp E, Dunn JK, Gotto AM, Patsch W. Relation of triglyceride metabolism and coronary artery disease: Studies in the postprandial state. Arterioscl Thromb 1992; 12: 1336–1345.

    PubMed  CAS  Google Scholar 

  109. Morton RE, Zilversmit DB. Inter-relationship of lipids transferred by the lipid-transfer protein isolated from human lipoprotein-deficient plasma. J Biol Chem 1989; 258: 11751–11757.

    Google Scholar 

  110. Yen FY, Deckelbaum RJ, Mann CJ, Marcel YL, Milne RW, Tall AR. Inhibition of cholesteryl ester transfer protein activity by monoclonal antibody: effects of cholesteryl ester formation an neutral lipid mass transfer in human plasma. J Clin Invest 1989; 83: 2018–2024.

    PubMed  CAS  Google Scholar 

  111. Hayek T, Azrolan N, Verdery RB, Walsh A, Chajek-Shaul T, Agellon LB, Tall AR, Breslow JL. Hypertriglyceridemia and cholesterol ester transfer protein interact to dramatically alter high density lipoprotein levels, particle sizes, and metabolism: Studies in transgenic mice. J Clin Invest 1993; 92: 1143–1152.

    PubMed  CAS  Google Scholar 

  112. Lagrost L, Florentin E, Guyard-Dangremont V, Athias A, Gandjini H, Lallemant C, Gambert P. Evidence for nonesterified fatty acids as modulators of neutral lipid transfers in normolipidemic human plasma. Arterioscl Thromb Vasc Biol 1995; 15: 1388–1396.

    PubMed  CAS  Google Scholar 

  113. Patsch JR, Prasad S, Gotto AM, Bengtsson-Olivecrona G. Postprandial lipemia: A key for the conversion of high density lipoprotein2 into high density lipoprotein3 by hepatic lipase. J Clin Invest 1984; 74: 2017–2023.

    PubMed  CAS  Google Scholar 

  114. Golay A, Zech L, Shi M-Z, Chiou Y-AM, Reaven GM, Chen Y-DI. High density lipoprotein (HDL) metabolism in non-insulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL J Clin Endocrinol Metab 1987; 65: 512–518.

    CAS  Google Scholar 

  115. Patsch, JR, Prasad, S, Gotto, AM, Patsch, W High density lipoprotein2: Relationship of the plasma levels of this lipoprotein species of its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest 1987; 80: 341–347.

    PubMed  CAS  Google Scholar 

  116. Karpe R, Tornval P, Olivecrona T, Steiner G, Carlson LA, Hamsten A. Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 1993; 98: 33–49.

    PubMed  CAS  Google Scholar 

  117. Griffin BA, Freeman DJ, Tait GW, Thomson J, Caslake MJ, Packard CJ, Shepherd J. Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subtractions: relative contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis 1994; 106: 241–253.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laws, A. (1999). Insulin Resistance and Dyslipidemia: Implications for Coronary Heart Disease Risk . In: Reaven, G.M., Laws, A. (eds) Insulin Resistance. Contemporary Endocrinology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-716-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-716-1_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-086-1

  • Online ISBN: 978-1-59259-716-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics