Skip to main content

Gonadal Hormone Regulation of Synaptic Plasticity in the Brain

What Is the Mechanism?

  • Chapter
Neurosteroids

Part of the book series: Contemporary Endocrinology ((COE,volume 16))

Abstract

Throughout the life span, the brain continues to be shaped and modified by the external world acting through the release and actions of circulating hormones and endogenous growth factors and neurotransmitters. Receptors for steroid hormones and thyroid hormone were the first transcription regulators discovered for eukaryotic cells (1). Besides helping to catalyze the discovery of other transcription regulators (2,3), the steroid-thyroid hormone family of receptors has provided an important tool for elucidating the sites and cellular mechanisms by which circulating hormones exert permanent develop-mental effects (e.g., sexual differentiation) and reversible and often cyclic effects on the mature brain (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jensen E, Suzuki T, Kawashima T, Stumpf W, Jungblut W, DeSombre E. A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci 1968; 59: 632–638.

    Article  PubMed  CAS  Google Scholar 

  2. Yamamoto K. Steroid receptor regulated transcription of specific genes and gene networks. Ann Rev Genet 1985; 19: 209–252.

    Article  PubMed  CAS  Google Scholar 

  3. Miner J N, Diamond MI, Yamamoto KR. Joints in the regulatory lattice: composite regulation by steroid receptor-AP1 complexes. Cell Growth Differ 1991; 2: 525–530.

    PubMed  CAS  Google Scholar 

  4. Becker J, Breedlove SM, Crews D. Behavioral Endocrinology. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  5. McEwen BS, Gould E, Orchinik M, Weiland NG, Woolley CS. Oestrogens and the structural and functional plasticity of neurons: implications for memory, ageing and neurodegenerative processes. In: Goode J, ed. Ciba Foundation Symposium, vol 191. The Non-Reproductive Actions of Sex Steroids. Wiley, Chichester, UK, 1995, pp. 52–73.

    Google Scholar 

  6. McEwen BS, Coirini H, Westlind-Danielsson A, Frankfurt M, Gould E, Schumacher M, Woolley C. Steroid hormones as mediators of neural plasticity. J Steroid Biochem Mol Biol 1991; 39: 223–232.

    Article  PubMed  CAS  Google Scholar 

  7. McEwen BS, Biegon A, Davis P, Krey L, Luine V, McGinnis M, Paden C, Parsons B, Rainbow T. Steroid hormones: humoral signals which alter brain cell properties and functions. Recent Prog Horm Res 1982; 38: 41–92.

    PubMed  CAS  Google Scholar 

  8. Romano GJ, Harlan RE, Shiverst BD, Howells RD, Pfaff DW. Estrogen increases proenkephalin messenger ribonucleic acid levels in the ventromedial hypothalamus of the rat. Mol Endocrinol 1988; 2: 1320–1328.

    Article  PubMed  CAS  Google Scholar 

  9. Simerly RB. Prodynorphin and proenkephalin gene expression in the anteroventral periventricular nucleus of the rat: sexual differentiation and hormonal regulation. Mol Cell Neurosci 1991; 2: 473–484.

    Article  PubMed  CAS  Google Scholar 

  10. Langub MC, Watson RE. Estrogen receptive neurons in the preoptic area of the rat are postsynaptic targets of a sexually dimorphic enkephalinergic fiber plexus. Brain Res 1992; 573: 61–69.

    Article  PubMed  CAS  Google Scholar 

  11. McEwen BS. Cellular biochemistry of hormone action in brain and pituitary. In: Adler N, ed. Primer of Neuroendocrine Function and Behavior. Plenum, New York, NY, 1981, pp. 485–518.

    Google Scholar 

  12. Herbison AE. Somatostatin-immunoreactive neurones in the hypothalamic ventromedial nucleus possess oestrogen receptors in the male and female rat. J Neuroendocrinology 1994; 6: 323–328.

    Article  CAS  Google Scholar 

  13. Popper P, Priest CA, Micevych PE. Effects of sex steroids on the cholecystokinin circuit modulating reproductive behavior. In: Micevych PE, Hammer RPJ, ed. Neurobiological effects of sex steroid hormones. Cambridge University Press, Cambridge, UK, 1995, pp. 160–183.

    Chapter  Google Scholar 

  14. Akesson TR, Micevych PE. Sex steroid regulation of tachykinin peptides in neuronal circuitry mediating reproductive functions. In: Micevych PE, Hammer RPJ, ed. Neurobiological effects of sex steroid hormones. Cambridge University Press, Cambridge, UK, 1995, pp. 207–233.

    Chapter  Google Scholar 

  15. De Vries GJ. Studying neurotransmitter systems to understand the development and function of sex differences in the brain: the case of vasopressin. In: Micevych PE, Hammer RPJ, ed. Neurobiological Effects of Sex Steroid Hormones. Cambridge University Press, Cambridge, UK, 1995, pp. 254–278.

    Chapter  Google Scholar 

  16. Kow LM, Mobbs CV, Pfaff DW. Roles of second-messenger systems and neuronal activity in the regulation of lordosis by neurotransmitters, neuropeptides and estrogen: a review. Neurosci Biobehav Rev 1994; 18: 251–268.

    Article  PubMed  CAS  Google Scholar 

  17. Carrer H, Aoki A. Ultrastructural changes in the hypothalamic ventromedial nucleus of ovariectomized rats after estrogen treatment. Brain Res 1982; 240: 221–233.

    Article  PubMed  CAS  Google Scholar 

  18. Frankfurt M, Gould E, Wolley C, McEwen BS. Gonadal steroids modify dendritic spine density in ventromedial hypothalamic neurons: a golgi study in the adult rat. Neuroendocrinology 1990; 51: 530–535.

    Article  PubMed  CAS  Google Scholar 

  19. Stephan F. Coupling between feeding-and light-entrainable circadian pacemakers in the rat. Physiol Behav 1986; 38: 537–544.

    Article  PubMed  CAS  Google Scholar 

  20. Forger NG, Breedlove SM. Steroid influences on a mammalian neuromuscular system. Semin Neurosci 1991; 3: 459–468.

    Article  Google Scholar 

  21. Sloviter R, Valiquette G, Abrams G, Ronk E, Sollas A, Paul L, Neubort S. Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 1989; 243: 535–538.

    Article  PubMed  CAS  Google Scholar 

  22. Gould E, McEwen BS. Neuronal birth and death. Curr Opin Neurobiol 1993; 3: 676–682.

    Article  PubMed  CAS  Google Scholar 

  23. Harlan RE. Regulation of neuropeptide gene expression by steroid hormones. Mol Neurobiol 1988; 2: 183–200.

    Article  PubMed  CAS  Google Scholar 

  24. McEwen BS, Davis P, Gerlach J, Krey L, MacLusky N, McGinnis M, Parsons B, Rainbow T. Progestin receptors in the brain and pituitary gland. In: Bardin CW, Mauvais-Jarvis P, Milgrom E, eds. Progesterone and Progestin. Raven, New York, NY, 1983, pp. 59–76.

    Google Scholar 

  25. McEwen BS, Coirini H, Frankfurt M, Gerlach J, Johnson A, Schumacher M. Neural gonadal steroid receptors and actions: chemical anatomy of the ventromedial hypothalamus in relation to sexual differentiation and sexual behavior. In: Carlstedt-Duke J, Eriksson H, Gustafsson J, eds. The Steroid/ Thyroid Hormone Receptor Family and Gene Regulation. Birkhauser, Basel, Switzerland, 1989, pp. 263–270.

    Google Scholar 

  26. Schumacher M, Coirini H, Flanagan L, Frankfurt M, Pfaff D, McEwen BS. Ovarian steroid modulation of oxytocin receptor binding in the ventromedial hypothalamus. Ann NY Acad Sci 1992; 374–386.

    Google Scholar 

  27. McEwen BS, Biegon A, Fischette C, Luine V, Parsons B, Rainbow T. Sex differences in programming of response to estradiol in the brain. In: M Serio, M Motta, M Zanisi, L Martini, eds. Sexual Differentiation. Raven, New York, NY, 1983, pp. 93–98.

    Google Scholar 

  28. Eichenbaum H, Otto T. The hippocampus: what does it do? Behav Neural Biol 1992; 57: 2–36.

    Article  PubMed  CAS  Google Scholar 

  29. Gray JA. Precis of the neuropsychology of anxiety: an enquiry into the functions of the septo-hippocamal system. Behav Brain Sci 1982; 5: 469–534.

    Article  Google Scholar 

  30. LeDoux JE. In search of an emotional system in the brain: leaping from fear to emotion and consciousness. In: M Gazzaniga, ed. The Cognitive Neurosciences. MIT Press, Cambridge, MA, 1995, pp. 1049–1061.

    Google Scholar 

  31. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992; 106: 274–285.

    Article  PubMed  CAS  Google Scholar 

  32. McEwen BS, Sakai RR, Spencer RL. Adrenal steroid effects on the brain: versatile hormones with good and bad effects. In: Schulkin J, ed. Hormonally-Induced Changes in Mind and Brain. Academic, San Diego, CA, 1993, pp 157–189.

    Google Scholar 

  33. Roof RL. The dentate gyms is sexually dimorphic in prepubescent rats: testosterone plays a significant role. Brain Res 1993; 610: 148–151.

    Article  PubMed  CAS  Google Scholar 

  34. Juraska J, Fitch J, Washburne J. The dendritic morphology of pyramidal neurons in the rat hippocampal CA3 area II. Effects of gender and the environment. Brain Res 1989; 479: 115–119.

    Article  PubMed  CAS  Google Scholar 

  35. Gould E, Westlind-Danielsson A, Frankfurt M, McEwen BS. Sex differences and thyroid hormone sensitivity of hippocampal pyramidal neurons. J Neurosci 1990; 10: 996–1003.

    PubMed  CAS  Google Scholar 

  36. O’Keefe JA, Handa RJ. Transient elevation of estrogen receptors in the neonatal rat hippocampus. Dev Brain Res 1990; 57: 119–127.

    Article  Google Scholar 

  37. MacLusky N, Clark AS, Naftolin F, Goldman-Rakic PS. Oestrogen formation in the mammalian brain: possible role of aromatase in sexual differentiation of the hippocampus and neocortex. Steroids 1987; 50: 459–474.

    Article  PubMed  CAS  Google Scholar 

  38. Loy R, Gerlach J, McEwen BS. Autoradiographic localization of estradiol-binding neurons in rat hippocampal formation and entorhinal cortex. Dev Brain Res 1988; 39: 245–251.

    Article  CAS  Google Scholar 

  39. DonCarlos LL, Monroy E, Morrell JI. Distribution of estrogen receptor-immunoreactive cells in the forebrain of the female guinea pig. J Comp Neurol 1991; 305: 591–612.

    Article  PubMed  CAS  Google Scholar 

  40. Kerr JE, Allore RJ, Beck SG, Handa RJ. Distribution and hormonal regulation of androgen receptor (ar) and ar messenger ribonucleic acid in the rat hippocampus. Endocrinology 1995; 136: 3213–3221

    Article  PubMed  CAS  Google Scholar 

  41. Sherry DF, Jacobs LF, Gaulin SJC. Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 1992; 15: 298–303.

    Article  PubMed  CAS  Google Scholar 

  42. Galea LAM, McEwen BS. Sex differences in adult neurogenesis in the wild-trapped meadow vole. Abstract Soc Neurosci 1995.

    Google Scholar 

  43. Westlind-Danielsson A, Gould E, McEwen BS. Thyroid hormone causes sexually distinct neurochemical and morphological alterations in rat septal-diagonal band neurons. J Neurochem 1991; 56: 119–128.

    Article  PubMed  CAS  Google Scholar 

  44. Gould E, Woolley C, McEwen BS. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones Psychoneuroendocrinology 1991; 16: 67–84.

    CAS  Google Scholar 

  45. Gould E, Woolley C, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10: 1286–1291.

    PubMed  CAS  Google Scholar 

  46. Cameron HA, McEwen BS, Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyms. J Neurosci 1995; 15: 4687–4692.

    PubMed  CAS  Google Scholar 

  47. Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal ca3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 89–98.

    Article  PubMed  CAS  Google Scholar 

  48. Popov VI, Bocharova LS. Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 1992; 48: 53–62.

    Article  PubMed  CAS  Google Scholar 

  49. Popov,VI, Bocharova LS, Bragin AG. Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 1992; 48: 45–51.

    Article  PubMed  CAS  Google Scholar 

  50. Mizoguchi K, Kunishita T, Chui DH, Tabira T. Stress induces neuronal death in the hippocampus of castrated rats. Neurosci Lett 1992; 138: 157–160.

    Article  PubMed  CAS  Google Scholar 

  51. Uno H, Ross T, Else J, Suleman M, Sapolsky R. Hippocampal damage associated with prolonged and fatal stress in primates J Neurosci 1989; 9: 1705–1711.

    CAS  Google Scholar 

  52. Halasy K, Somogyi P. Subdivision in the multiple GABAergic innervation of granule cells in the dentate gyms of the rat hippocampus. Eur J Neurosci 1993; 5: 411–429.

    Article  PubMed  CAS  Google Scholar 

  53. Amaral DG. A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neur 1978; 182: 851.

    Article  PubMed  CAS  Google Scholar 

  54. Soriano E, Nitsch R, Frotscher M. Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies. J Comp Neurol 1990; 293: 1–25.

    Article  PubMed  CAS  Google Scholar 

  55. Sik A, Pentonen M, Ylinen A, Buzsaki G. Hippocampal CA1 interneurons: an in vivo intracellular labelling study. J Neuroscience 1995; 15: 6651–6665.

    CAS  Google Scholar 

  56. Buckmaster PS, Schwartzkroin PA. Interneurons and inhibition in the dentate gyms of the rat in vivo. J Neurosci 1995; 15: 774–789.

    PubMed  CAS  Google Scholar 

  57. Sik A, Ylinen A, Penttonen M, Buzsaki G. Inhibitory CA1–CA3-Hilar region feedback in the hippocampus. Science 1994; 265: 1722–1724.

    Article  PubMed  CAS  Google Scholar 

  58. Ribak C, Seress L, Peterson GM, Seroogy KB, Fallon JH, Schmued LC. A GABAergic inhibitory component within the hippocampal commissural pathway. J Neurosci 1986; 6: 3492–3498.

    PubMed  CAS  Google Scholar 

  59. Li, X, P Somogyi, J M Tepper, and G Buzsaki 1992 Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus Exp Brain Res 90: 519–525

    CAS  Google Scholar 

  60. Gulyas A I, Toth K, Danos P, Freund TF. Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus J Comp Neurol 1991; 312: 371–378.

    CAS  Google Scholar 

  61. Nitsch R, Leranth C. Subcortical innervation of hippocampal non-principal cells. Anat Embryol Berlin 1990; 181: 413–425.

    Article  CAS  Google Scholar 

  62. Kosaka T, WU JY, Benoit R. GABAergic neurons containing somatostatin-like immunoreactivity in the rat hippocampus and dentate gyrus. Exp Brain Res 1988; 71: 388–398.

    PubMed  CAS  Google Scholar 

  63. Toth K, Freund T. Calbindin D28k containing nonpyramidal cells in the rat hippocampus: their immunocreativity for gaba and projection to the medial septum. Neuroscience 1992; 49: 793–805.

    Article  PubMed  CAS  Google Scholar 

  64. Gulyas AI, Miettinen R, Jacobowitz DM, Freund TF. Calretinin is present in non-pyramidal cells of the rat hippocampus. I. New type of neuron specifically assoicated with the mossy fibre system. Neuroscience 1992; 48: 1–27.

    Article  PubMed  CAS  Google Scholar 

  65. Sloviter RS, Nilaver G Immunocytochemical localizationof GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J Comp Neurol 1987; 256: 42–60.

    Article  PubMed  CAS  Google Scholar 

  66. Miettinen R, Gulyas AI, Baimbridge KG, Jacobowitz DM, Freund TF. Calretinin is present in non-pyramidal cells of the rat hippocampus- II. Co-existence with other calcium binding proteins and GABA. Neuroscience 1992; 48: 29–43.

    Article  PubMed  CAS  Google Scholar 

  67. Michelson HB, Wong RKS. Excitatory synaptic responses mediated by GABAA receptors in the hippocampus. Science 1995; 253: 1420–1423.

    Article  Google Scholar 

  68. Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 1995; 269: 977–985.

    Article  PubMed  CAS  Google Scholar 

  69. Halasy K, Miettinen R, Szabat E, Freund TF. GABAergic interneurons are the major postsynaptic targets of median raphe afferents in the rat dentate gyms. Eur J Neurosci 1992; 4: 144–153.

    Article  PubMed  Google Scholar 

  70. Freund TF, Gulyas AI, Acsady L, Gores T, Toth K. Serotonergic control of the hippocampus via local inhibitory interneurons.Proc Natl Acad Sci USA 1990; 87: 8501–8505.

    Article  CAS  Google Scholar 

  71. Ghadimi BM, Jarolimek W, Misgeld U. Effects of serotonin on hilar neurons and granule cell inhibition in the guinea pig hippocampal slice. Brain Res 1994; 633: 27–32.

    Article  PubMed  CAS  Google Scholar 

  72. Ropert N, Guy N. Serotonin facilitates GABAergic transmission in the CAI region of the rat hippocampus in vitro. J Physiol 1994; 121–136.

    Google Scholar 

  73. Beck SG. 5-Hydroxytryptamine increases excitability of CA1 hippocampal pyramidal cells. Synapse 1992; 10: 334–340.

    Article  PubMed  CAS  Google Scholar 

  74. Zeise ML, Batsche K, Wang RY. The 5-HT3 receptor agonist 2-methyl-5HT reduces postsynaptic potentials in rat CA1 pyramidal neurons of the hippocampus in vitro. Brain Res 1994; 651: 337–341.

    Article  PubMed  CAS  Google Scholar 

  75. Schmitz D, Empson RM, Heinemann U. Serotonin reduces inhibition via 5-HT1A receptors in area CAI of rat hippocampal slices in vitro. J Neurosci 1995; 15: 7217–7225.

    PubMed  CAS  Google Scholar 

  76. Woolley C; McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 1993; 336: 293–306.

    Article  PubMed  CAS  Google Scholar 

  77. Andrade R; Chaput Y. 5-Hydroxytryptamine 4-like receptors mediate the slow excitatory response to serotonin in the rat hippocampus. J Pharmacol Exp Ther 1991; 257: 930–937.

    PubMed  CAS  Google Scholar 

  78. Witter MP. Organization of the entorhinal-hippocampal system: a review of current anatomical data. Hippocampus 1993; 3: 33–44.

    PubMed  Google Scholar 

  79. Sibug RM, Stumpf WE, Shughrue PJ, Hochberg RB, Drews U. Distribution of estrogen target sites in the 2-day-old mouse forebrain and pituitary gland during the `critical period’ of sexual differentiation. Dev Brain Res 1991; 61: 11–22.

    Article  CAS  Google Scholar 

  80. Dickinson SL, Curzon G. 5-Hydroxytryptamine mediated behavior in male and female rats. Neuropharmacology 1986; 771–776.

    Google Scholar 

  81. Rosencrans JA. Differences in brain area 5-hydroxytryptamine turnover and rearing behavior in rats and mice of both sexes. Eur J Pharmacol 1970; 9: 379–382.

    Article  Google Scholar 

  82. Watts AG, Stanely HF. Indoleamines in the hypothalamus and area of the midbrain raphe nuclei of male and female rats throughout postnatal development. Neuroendocrinology 1984; 38: 461–466.

    Article  PubMed  CAS  Google Scholar 

  83. Kawakami M, Yoshioka E, Konda N, Arita J, Visessuvan S. Data on the sites of stimulatory feeedback action of gonadal steroids indispensable for luteinizing hormone release in the rat. Endocrinology 1978; 102: 791–798.

    Article  PubMed  CAS  Google Scholar 

  84. Carlsson M; Carlsson A. A regional study of sex differences in rat brain serotonin. Prog Neuropsychopharmacol Biol Psychiat 1988; 12: 53–61.

    Article  CAS  Google Scholar 

  85. Halem DJ, Kennett GA, Curzon G. Hippocampal 5-hydroxytryptamine synthesis is greater in female rats than in males and more decreased by the 5-HT A agonist 8-OH-DPATJ. Neural Transm 1990; 79: 93–101.

    Article  Google Scholar 

  86. Carlsson M, Svensson K, Eriksson E, Carlsson A. Rat brain serotonin: biochemical and functional evidence for a sex difference. J Neural Transm 1985; 63: 297–313.

    Article  PubMed  CAS  Google Scholar 

  87. Biegon A, Bercovitz H, Samuel D. Serotonin receptor concentration during the estrous cycle of the rat. Brain Res 1980; 187: 221–225.

    Article  PubMed  CAS  Google Scholar 

  88. Kueng W, Wirz-Justice A, Menzi R, Chappuis-Arndt E. Regional brain variations of tryptophan, monoamines, monoamine oxidase activity, plasma free and total tryptophan during the estrous cycle of the rat. Neuroendocrinology 1976; 21: 289–296.

    Article  PubMed  CAS  Google Scholar 

  89. Myer DC, Quey WB. Hypothalamic and suprachiasmatic uptake of serotonin in vitro: twenty-four-hour changes in male and proestrus female rats. Endocrinology 1975; 98: 1160–1165.

    Article  Google Scholar 

  90. Uphouse L, Williams J, Eckols K, Sierra V. Variations in binding of (3H)5-HT to cortical membranes during the female rat estrous cycle. Brain Res 1986; 381: 376–381.

    Article  PubMed  CAS  Google Scholar 

  91. Vitali ML, Parisi MN, Chiocchio SR, Tramezzani JH. Median eminence serotonin involved in the proestrus gonadotropin release. Neuroendocrinology 1984; 39: 136–141.

    Article  Google Scholar 

  92. Biegon A, Reches A, Snyder L, McEwen BS. Serotonergic and noradrenergic receptors in the rat brain: modulation by chronic exposure to ovarian hormones. Life Sciences 1983; 2015–2021.

    Google Scholar 

  93. Chomicka LK. Effect of oestradiol on the responses of regional brain serotonin to stresses in the ovariectomized rat. J Neural Transm 1986; 67: 267–273.

    Article  PubMed  CAS  Google Scholar 

  94. Cone RI, Davis GA, Goy RW. Effects of ovarian steroids on serotonin metabolism within grossly dissected and microdissected brain regions of the ovariectomized rat. Brain Res Bull 1981; 7: 639–644.

    Article  PubMed  CAS  Google Scholar 

  95. Crowley WR, O’Donohue TL, Muth EA, Jacobowitz DM. Effects of ovarian hormones on levels of luteinizing hormone in plasma and on serotonin concentrations in discrete brain nuclei. Brain Res Bull 1979; 4: 571–574.

    Article  PubMed  CAS  Google Scholar 

  96. Di Paolo T, Daigle M, Picard V, Barden N. Effect of acute and chronic 1713-estradiol treatment on serotonin and 5-hydroxy-indole acetic acid content of discrete brain nuclei of overariectomized rats. Exp Brain Res 1983; 51: 73–76.

    Article  PubMed  Google Scholar 

  97. James MD, Hole DR, Wilson CA. Differential involvement of 5-hydroxytryptamine (5-HT) in specific hypothalamic areas in the mediation of steroid-induced changes in gonadotropin release and sexual behavior in female rats. Neuroendocrinology 1989; 49: 561–569.

    Article  PubMed  CAS  Google Scholar 

  98. Johnson MD, Crowley WR. Acute effects of estradiol on circulating luteinizing hormone and prolactin concentrations and on serotonin turnover in individual brain nuclei. Endocrinology 1983; 113: 1935–1941.

    Article  PubMed  CAS  Google Scholar 

  99. King TS, Steger RW, Morgan WW. Effect of ovarian steroids to stimulate region-specific hypothalamic 5-hydroxytryptamine synthesis in ovariectomized rats. Neuroendocrinology 1986; 42: 344–350.

    Article  PubMed  CAS  Google Scholar 

  100. Ladisich W. Effect of progesterone on regional 5-hydroxytryptamine metabolism in the rat brain. Neuropharmacology 1974; 13: 877–883.

    Article  PubMed  CAS  Google Scholar 

  101. Luine VN, Khylchevcskaya RI, McEwen, BS. Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Res 1975; 86: 293–306.

    Article  PubMed  CAS  Google Scholar 

  102. Mendelson SD, McKittrick CR, McEwen BS. Autoradiographic analyses of the effects of estradiol benzoate on (3H)-paroxetine binding in the cerebral cortex and dorsal hippocampus of gonadectomized male and female rats. Brain Res 1993; 601: 299–302.

    Article  PubMed  CAS  Google Scholar 

  103. Munaro, NI. The effect of ovarian steroids on hypothalamic 5-hydroxytryptamine neuronal activity. Neuroendocrinology 1978; 26: 270–276.

    Article  PubMed  CAS  Google Scholar 

  104. Walker RF, Wilson CA. Changes in hypothalamic serotonin associated with amplification of LH surges by progesterone in rats. Neuroendocrinology 1983; 37: 200–205.

    Article  PubMed  Google Scholar 

  105. Clarke WP, Maayani S. Estrogen effects on 5-HT1A receptors in hippocampal membranes from ovariectomized rats: functional and binding studies. Brain Res 1990; 518: 287–291.

    Article  PubMed  CAS  Google Scholar 

  106. Morrell JI, Crews D, Ballin A, Morgentaler A, Pfaff DW. 3H-Estradiol, 3H-testosterone and 3Hdihydrotestosterone localization in the brain of the lizard Anolis carolinensis: an autoradiographic study. J Comp Neurol 1979; 188: 201–244.

    Article  PubMed  CAS  Google Scholar 

  107. Bethea CL. Regulation of progestin receptors in raphe neurons of steroid-treated monkeys. Neuroendocrinology 1994; 60: 50–61.

    Article  PubMed  CAS  Google Scholar 

  108. Mistry AM, Voogt JL. Serotonin synthesis inhibition or receptor antagonism reduces pregnancy-induced nocturnal prolactin secretion. Life Sci 1990; 47: 693–701.

    Article  PubMed  CAS  Google Scholar 

  109. Williams RF, Gianfortoni JG, Hodgen GD. Hyperprolactinemia induced by an estrogen-progesterone synergy: quantitative and temporal effects of estrogen priming in monkeys. J Clin Endocrinol Metab 1985; 60: 126–132.

    Article  PubMed  CAS  Google Scholar 

  110. Wong M, Moss RL. Electrophysiological evidence for a rapid membrane action of the gonadal steroid, 173-estradiol, on CA1 pyramidal neurons of the rat hippocampus. Brain Res 1991; 543: 148–152.

    Article  PubMed  CAS  Google Scholar 

  111. Wong M, Moss RL. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J Neurosci 1992; 12: 3217–3225.

    PubMed  CAS  Google Scholar 

  112. Gu Q, Moss RL. 173-estradiol potentiates kainate-induced currents via activation of the camp cascade. J Neurosci 1996; 16: 3620–3629.

    PubMed  CAS  Google Scholar 

  113. Korach KS. Insights from the study of animals lacking functional estrogen receptor. Science 1994; 266: 1524–1527.

    Article  PubMed  CAS  Google Scholar 

  114. Mermelstein PG, Becker JB, Surmeier DJ. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J Neurosci 1996; 16: 595–604.

    PubMed  CAS  Google Scholar 

  115. Webb P, Lopez GN, Uht RM, Kushner PJ. Tamoxifen activation of the estrogen receptor/ap-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 1995; 9: 443–456.

    Article  PubMed  CAS  Google Scholar 

  116. McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol 1995; 9: 659–669.

    Article  PubMed  CAS  Google Scholar 

  117. Cicatiello L, Cobellis G, Addeo R, Papa M, Altucci L, Sica V, Bresciani F, LeMeur M, LakshimiKumar V, Chambon P, Weisz A. In vivo functional analysis of the mouse estrogen receptor gene promotor: a transgeneic mouse model of study tisse-specific and developmental regulation of estrogen gene transcription. Mol Endocrinol 1995; 9: 1077–1090.

    Article  PubMed  CAS  Google Scholar 

  118. Horner CH. Plasticity of the dendritic spine. Prog Neurobiol 1993; 41: 281–321.

    Article  PubMed  CAS  Google Scholar 

  119. Siegel SJ, Janssen WG, Tullai JW, Rogers SW, Moran T, Heinemann SF, Morrison JH. Distribution of the excitatory amino acid receptor subunits GIuR2(4) in monkey hippocampus and colocalization with subunits G1uR5–7 and NMDARI. J Neurosci 1995; 15: 2707–2719.

    PubMed  CAS  Google Scholar 

  120. Siegel SJ, Brose N, Janssen WG, Gasic P, Jahn R, Heineman S, Morrison JH. Regional, cellular, and ultrastructural distribution of N-methyl-D-aspartate receptor subunit 1 in monkey hippocampus. Neurobiology 1994; 91: 564–568.

    CAS  Google Scholar 

  121. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994; 12: 529–540.

    Article  PubMed  CAS  Google Scholar 

  122. Simerly RB, Chang C, Muramastsu M, Swanson LW. Distribution of androgen and estrogen receptor mrna-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 1990; 29: 76–95.

    Article  Google Scholar 

  123. Komuro H, Rakic P. Selective role of N-type calcium channels in neuronal migration. Science 1995; 257: 806–809.

    Article  Google Scholar 

  124. Komuro H, Rakic P. Modulation of neuronal migration by NMDA receptors. Science 1995; 260: 95–97.

    Article  Google Scholar 

  125. Yen L, Sibley JT, Constantine-Paton M. Analysis of synaptic distribution within single retinal axonal arbors after chronic NMDA treatment. J Neurosci 1995; 15: 4712–4725.

    PubMed  CAS  Google Scholar 

  126. Collin C, Miyaguchi K, Segal M. Dendritic spines in hippocampal neurons: correlating structure and function. Abstract Soc Neurosci 1995; 1811.

    Google Scholar 

  127. Diekmann S, Nitsch R, Ohm TG. The organotypic entorhinal-hippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders. J Neural Transm 1994; 44: 61–71.

    CAS  Google Scholar 

  128. Yu T, Brown TH. Three-dimensional quantification of mossy-fiber presynaptic boutons in living hippocampal slices using confocal microscopy. Synapse 1994; 18: 190–197.

    Article  PubMed  CAS  Google Scholar 

  129. Woolley CS, Weiland NG, MCEwen BS, Schwartzkroin PA. Estradiol increases the sensitivity of hippocampal CAI pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J Neurosci 1997; 17: 1848–1859.

    PubMed  CAS  Google Scholar 

  130. Warren SG, Humphreys AG, JuraskaJM, Greenough WT. LTP varies across the estrous cycle: enhanced synaptic plasticity in proestrus rats. Brain Res 1995; 703: 26–30.

    Article  PubMed  CAS  Google Scholar 

  131. Terasawa E, Timiras P. Electrical activity during the estrous cycle of the rat: cyclic changes in limbic structures. Endocrinology 1968; 83: 207–216.

    Article  PubMed  CAS  Google Scholar 

  132. Woolley C, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl-Daspartate receptor dependent mechanism. J Neurosci 1994; 14: 7680–7687.

    PubMed  CAS  Google Scholar 

  133. Fader A J, Hendricson AW, Dohanich GP. Effects of estrogen treatment on t-maze alternation in female and male rats. Abstract Soc Neurosci 1996: 1386.

    Google Scholar 

  134. Daniel JM, Fader AJ, Spencer A, Wee BEF. Effects of estrogen and environment on radial maze acquisition. Abstract Soc Neurosci 1996; 1386.

    Google Scholar 

  135. O’Neal MF, Means LW, Poole MC, Hamm R.I. Estrogen affects performance of ovariectomized rats in a two-choice water-escape working memory task. Psychoneuroendocrinology 1996; 21: 51–65.

    Article  PubMed  Google Scholar 

  136. Luine VN, Rentas J, Sterbank L, Beck K. Estradiol effects on rat spatial memory. Abstract Soc Neurosci 1996; 1387.

    Google Scholar 

  137. Korol DL, Couper JM, McIntyre CK, Gold PE. Strategies for learning across the estrous cycle in female rats. Abstract Soc Neurosci 1996; 1386.

    Google Scholar 

  138. Juraska JM, Warren SG. Spatial memory decline in aged, non-cycling female rats varies with the phase of estropause. Abstract Soc Neurosci 1996; 1387.

    Google Scholar 

  139. Sherwin BB. Estrogenic effects on memory in women. Ann NY Sci 1994; 743: 213–231.

    Article  CAS  Google Scholar 

  140. Robinson D, Friedman L, Marcus R, Tinklenberg J, Yesavage J. Estrogen replacement therapy and memory in older women J Am Geriatr Soc 1994; 42: 919–922.

    CAS  Google Scholar 

  141. Sherwin BB, Tulandi T. “Add-Back” estrogen reverses cognitive deficits induced by a gonadotropin-releasing hormone agonist in women with leiomyomata uteri. J Clin Endocrinol Metab 1996; 81: 2545–2549.

    Article  PubMed  CAS  Google Scholar 

  142. Birge SJ. The role of estrogen deficiency in the aging central nervous system. In: Lobo RA, ed. Treatment of the Postmenopausal Woman: Basic and Clinical Aspects. Raven, New York, NY, 1994, pp. 153–157.

    Google Scholar 

  143. Henderson VW, Paganini-Hill A, Emanuel CK, Dunn ME, Buckwalter JG. Estrogen replacement therapy in older women: comparisons between alzheimer’ s disease cases and nondemented control subjects. Arch Neurol 1994; 51: 896–900.

    Article  PubMed  CAS  Google Scholar 

  144. Paganini-Hill A, Henderson VW. Estrogen deficiency and risk of alzheimer’s disease in women. Am J Epidemil 3; 3: 3–16.

    Google Scholar 

  145. Henderson VW, Watt L, Buckwalter JG. Cognitive skills associated with estrogen replacement in women with alzheimer’s disease. Psychoneuroendocrinology 1996; 12: 421–430.

    Article  Google Scholar 

  146. Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B, Andrews H, Mayeux R. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996; 348: 429–432.

    Article  PubMed  CAS  Google Scholar 

  147. Berry B, McMahan R, Gallagher M. The effects of estrogen on performance of a hippocampal-dependent task. Abstract Soc Neurosci 1996; 22: 1386.

    Google Scholar 

  148. Blasberg ME, Stackman RW, Langan CJ, Clark AS. Dynamics of working memory across the estrous cycle. Abstract Soc Neurosci 1996; 22: 1386.

    Google Scholar 

  149. Frye CA. Estrus-associated decrements in a water maze task are limited to acquisition. Physiol Behav 1995; 57: 5–14.

    Article  PubMed  CAS  Google Scholar 

  150. Craig A M, Blackstone CD, Huganir RL, Banker G. Selective clustering of glutamate and y-aminobutyric acid receptors on opposite terminals releasing the corresponding neurotransmitters. Proc Nat Acad Sci USA 1994; 91: 12373–12377.

    Article  PubMed  CAS  Google Scholar 

  151. Carlin RK, Siekevitz P. Plasticity in the central nervous system: do synapses divide? Proc Nat Acad Sci USA 1983; 80: 3517–3521.

    Article  PubMed  CAS  Google Scholar 

  152. Lustig RH, Hua P, Wilson MC, Frederoff HJ. Ontogeny, sex dimorphism, and neonatal sex hormone determination of synapse-associated messenger RNAs in rat brain. Mol Brain Res 1993; 20: 101–110.

    Article  PubMed  CAS  Google Scholar 

  153. Catsicas S, Larhammar D, Blomqvist A, Paolo Sanna P, Millner RJ, Wilson MC. Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis. Neurobiology 1991; 88: 785–789.

    CAS  Google Scholar 

  154. Day JR, Min BH, Laping NJ, Martin III G, Osterburg HH, Finch CE. New mRNA probes for hippocampal responses to entorhinal cortex lesions in the adult male rat: a preliminary report. Exp Neurol 1992: 97–99.

    Google Scholar 

  155. Vician L, Lim IK, Ferguson G, Tocco G, Baudry M, Herschman HR. Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Neurobiology 1995; 92: 2164–2168.

    CAS  Google Scholar 

  156. Marqueze B, Boudier JA, Mizuta M, Inagaki N, Seino S, Seagar M. Cellular localization of synaptotagmin i, ii, and iii mrnas in the central nervous system and pituitary and adrenal glands of the rat. J Neurosci 1995; 15: 4906–4917.

    PubMed  CAS  Google Scholar 

  157. Lou X, Bixby JL. Patterns of presynaptic gene expression define two stages of synaptic differentiation. Mol Cell Neurosci 1995; 6: 252–262.

    Article  PubMed  CAS  Google Scholar 

  158. Knaus P, Marqueze-Pouey B, Scherer H, Betz H. Synaptoporin, a novel putative channel protein of synaptic vesicles. Neuron 1990; 5: 453–462.

    Article  PubMed  CAS  Google Scholar 

  159. Marqueze-Pouey B, Wisden W, Malosio Luisa M, Betz H. Differential expression of synaptophysin and synaptoporin mRNAs in the postnatal rat central nervous system. J Neurosci 1991; 11: 3388–3397.

    PubMed  CAS  Google Scholar 

  160. Wiedenmann B, Franke WW. Identification and localization of snyaptophysin, an integral membrane glycoprotein of mr 38,000 characteristic of presynaptic vesicles. Cell 1985; 41: 1017–1028.

    Article  PubMed  CAS  Google Scholar 

  161. Han H, Nichols RA, Rubin MR, Bahler M, Greengard P. Induction of formation of presynaptic terminals in neuroblastoma cells by synapsin lIb. Nature 1991; 349: 697–700.

    Article  PubMed  CAS  Google Scholar 

  162. Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC. Essential functions of snyapsins I and II in synaptic vesicle regulation. Nature 1995; 375: 488–493.

    Article  PubMed  CAS  Google Scholar 

  163. Han H, Greengard P. Remodeling of cytoskeletal architecture of nonneuronal cells induced by synapsin. Cell Biol 1994; 91: 8557–8561.

    CAS  Google Scholar 

  164. Ferreira A, Han HQ, Greengard P, Kosik KS. Suppression of synapsin II inhibits the formation and maintenance of synapses in hippocampal culture. Proc Nat Acad Sci USA 1995; 92: 9225–9229.

    Article  PubMed  CAS  Google Scholar 

  165. Masliah E, Fagan AM, Terry RD, DeTeresa R, Mallory M, Gage FH. Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the dentate gyrus of the adult rat. Exp Neurol 1991; 113: 131–142.

    Article  PubMed  CAS  Google Scholar 

  166. Chicurel M, Terrian DM, Potter H. mRNA at the synapse:analysis of a synaptosomal preparation enriched in hippocompal dendritic spines. J Neurosci 1993; 13: 4054–4061.

    PubMed  CAS  Google Scholar 

  167. Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF. Arc, a Growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 1995; 14: 433–445.

    Article  PubMed  CAS  Google Scholar 

  168. Tiedge H, Fremeanu RT, Weinstock PH, Arancio OI, Brosius J. Dendritic location of neural BC! RNA. Proc Nat Acad Sci USA 1991; 88: 2093–2097.

    Article  PubMed  CAS  Google Scholar 

  169. Tiedge H, Zhou A, Thorn NA, Brosius J. Transport of BC 1 RNA in hypothalamo-neurohypophyseal axons. J Neurosci 1993; 13: 4214–4219.

    PubMed  CAS  Google Scholar 

  170. Kleiman R, Banker G, Steward O. Subcellular distribution of rRNA and poly(A) RNA in hippocampal neurons in culture. Mol Brain Res 1993; 20: 305–312.

    Article  PubMed  CAS  Google Scholar 

  171. Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci USA 1982; 79: 7590–7596.

    Article  PubMed  CAS  Google Scholar 

  172. Ouimet CC, Da Curz E Silva EF, Greengard P. The alpha and gamma] isoforms of protein phosphatase 1 are highly and specifically concentrated in dendritic spines. Proc Nat Acad Sci USA 1995; 92: 3396–3400.

    CAS  Google Scholar 

  173. Mons N, Harry A, Dubourg P, Premont RT, Iyengar R, Cooper DMF Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc Nat Acad Sci USA 1995; 92: 8473–8477.

    Article  PubMed  CAS  Google Scholar 

  174. Ludvig N, Burmeister V, Jobe PC, Kincaid RL. Electron microscopic immunocytochemical evidence that the calmodulin-dependent cyclic nucleotide phosphodiesterase is localized predominantly at postsynaptic sites in the rat brain. Neuroscience 1991; 44: 491–500.

    Article  PubMed  CAS  Google Scholar 

  175. Klintsova A, Levy WB, Desmond NL. Astrocytic volume fluctuates in the hippocampal CAI region across the estrous cycle. Brain Res 1995; 690: 269–274.

    Article  PubMed  CAS  Google Scholar 

  176. Luquin S, Naftolin F, Garcia-Segura LM. Natural fluctuation and gonadal hormone regulation of astrocyte immunoreactivity in dentate gyrus. J Neurobiol 1992; 24: 913–924.

    Article  Google Scholar 

  177. Laping NJ, Teter B, Nichols NR, Rozovsky I, Finch CE. Glial fibrillary acidic protein: regulation by hormones, cytokines, and growth factors. Brain Pathology 1994; 1: 259–275.

    Article  Google Scholar 

  178. Poirier J, Hess M, May PC, Finch CE. Astrocytic apolipopprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Mol Brain Res 1991; 11: 97–106.

    CAS  Google Scholar 

  179. Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 17: 525–530.

    CAS  Google Scholar 

  180. Holtzman DM, Pitas RE, Kilbridge J, Nathan B, Mahley RW, Bu G, Schwartz AL. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci USA 1995; 92: 9480–9484.

    Article  PubMed  CAS  Google Scholar 

  181. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer disease. Neurobiology 1995; 92: 4725–4727.

    CAS  Google Scholar 

  182. Goedert M, Strittmatter WJ, Roses AD. Risky apolipoprotein in brain. Nature 1995; 372: 45–46.

    Article  Google Scholar 

  183. Lauterborn JC, Tran TMD, lsackson PJ, Gall CM. Nerve growth factor mRNA is expressed by GABAergic neurons in rat hippocampus. Neuro Report 1994; 5: 273–276.

    Google Scholar 

  184. Cheng B, Mattson MP. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 1994; 640: 56–67.

    Article  PubMed  CAS  Google Scholar 

  185. Sohrabji F, Miranda RCG, Toran-Allerand CD. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc Nat Acad Sci USA 1995; 92: 11110–11114.

    Article  PubMed  CAS  Google Scholar 

  186. Gall C. Regulation of brain neurotrophin expression by physiological activity Trends Pharmacol Sci 1992; 13: 401–403.

    CAS  Google Scholar 

  187. Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 1992; 9: 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  188. Lindvall O, Ernfors P, Bengzon J, Kokaia Z, Smith ML, Siesjo BK, Persson H. Differential regulation of mRNAs for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the adult rat brain following cerebral ischemia and hypoglycemic coma. Proc Natl Acad Sci USA 1992; 89: 648–652.

    Article  PubMed  CAS  Google Scholar 

  189. Wetmore C, Olson L, Bean AJ. Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors. J Neurosci 1994; 14: 1688–1700.

    PubMed  CAS  Google Scholar 

  190. Neeper SA, Gomez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature 1995; 373: 109.

    Article  PubMed  CAS  Google Scholar 

  191. Kokaia Z, Bengzon J, Metsis M, Kokaia M, Persson H, Lindvall O. Coexpression of neurotrophins and their receptors in neurons of the central nervous system. Proc Natl Acad Science USA 1993; 90: 6711–6715.

    Article  CAS  Google Scholar 

  192. Springer JE, Gwag BJ, Sessler FM. Neurotrophic factor mRNA expression in dentate gyrus is increased following in vivo stimulation of the angular bundle. Mol Brain Res 1994; 23: 135–143.

    Article  PubMed  CAS  Google Scholar 

  193. Gibbs RB, Pfaff DW. Effects of estrogen and fimbria/fornix transection on p75NGFr and ChAT expression in the medial septum and diagonal band of broca. Exp Neurol 1992; 116: 23–29.

    Article  PubMed  CAS  Google Scholar 

  194. Gibbs RB, Wu D, Hersh LB, Pfaff DW. Effects of estrogen replacement on the relative levels of choline acetyltransferase, trkA, and nerve growth factor messenger RNAs in the basal forebrain and hippocampal formation of adult rats. Exp Neurol 1994; 129: 70–80.

    Article  PubMed  CAS  Google Scholar 

  195. Singh M, Meyer EM, Simpkins JW. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female sprague-dawley rats. Endocrinology 1995; 136: 2320–2324.

    Article  PubMed  CAS  Google Scholar 

  196. Phillips SM, Sherwin BB. Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 1992; 17: 485–495.

    Article  PubMed  CAS  Google Scholar 

  197. Fillit H, Weinreb H, Cholst I, Luine V, McEwen BS, Amador R, Zabriskie J. Observations in a preliminary open trial of estradiol therapy for senile dementia-Alzheimer’s type. Psychoneuroendocrinology 1986; 11: 337–345.

    Article  PubMed  CAS  Google Scholar 

  198. Honjo H, Ogino Y, Naitoh K, Urabe M, Kitawaki J, Yasuda J, Yamamoto T, Ishihara S, Okada H, Yonezawa T, Hayashi K, Nambara T. In vivo effects by estrone sulfate on the central nervous systemsenile dementia. J Steroid Biochem Mol Biol 1989; 34: 521–525.

    CAS  Google Scholar 

  199. Bonuccelli U, Melis GB, Paoletti AM, Fioretti P, Muni L, Muratoria A. Unbalanced progesterone and estradiol secretion in catamenial epilepsy. Epil Res 1989; 3: 100–106.

    Article  CAS  Google Scholar 

  200. Regier DA, Boyd JH, Burke JD, Rae DS, Myers JK, Kramer M, Robbins LN, George LK, Karno M, Locke BZ. One-month prevalence of mental disorders in the US. Arch Gen Psychiat 1988; 45: 977–986.

    Article  PubMed  CAS  Google Scholar 

  201. Bedard P, Langelier P, Villeneuve A. Oestrogens and extrapyramidal system. The Lancet 1977; 1367.

    Google Scholar 

  202. Kimura D. Sex differences in the brain. Sci Amer 1992; 267: 119–125.

    Article  Google Scholar 

  203. Landfield P. Modulation of brain aging correlates by long-term alterations of adrenal steroids and neurally-active peptides. Prog Brain Res 1987; 72: 279–300.

    Article  PubMed  CAS  Google Scholar 

  204. Sapolsky R. Stress, The Aging Brain and the Mechanisms of Neuron Death. MIT Press, Cambridge, MA, 1992; 1–423.

    Google Scholar 

  205. Woolley C, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 1992; 12: 2549–2554.

    PubMed  CAS  Google Scholar 

  206. Luine VN. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985; 89: 484–490.

    Article  PubMed  CAS  Google Scholar 

  207. Hamilton JA. Reproductive pharmacology: perspectives on gender as a complex variable in clinical research. Social Pharmacol 1989; 3: 181–200.

    Google Scholar 

  208. Hall ED, Pazara KE, Linseman KL. Sex differences in postischemic neuronal necrosis in gerbils. J Cereb Blood Flow Metab 1991; 11: 292–298.

    Article  PubMed  CAS  Google Scholar 

  209. Morse JK, Dekosky ST, Scheff SW. Neurotrophic effects of steroids on lesion-induced growth in the hippocampus. Exp Neurol 1992; 118: 47–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

McEwen, B.S. (1999). Gonadal Hormone Regulation of Synaptic Plasticity in the Brain. In: Baulieu, EE., Robel, P., Schumacher, M. (eds) Neurosteroids. Contemporary Endocrinology, vol 16. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-693-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-693-5_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-068-7

  • Online ISBN: 978-1-59259-693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics