Skip to main content

Replicating Huntington Disease’s Phenotype in Nonhuman Primates

  • Chapter
Central Nervous System Diseases

Abstract

Huntington’s disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder characterized by involuntary choreiform movements, cognitive decline, and a progressive neuronal degeneration primarily affecting the striatum. At present there is no effective therapy, even palliative, against this disorder. The gene responsible for the disease has been localized on the short arm of chromosome 4 (1) and the molecular defect recently identified (2) as an abnormal repeat of CAG triplets in the 5′ coding region of a gene (IT15) encoding a protein (huntingtin) with unknown function. Despite the intense search for a cell pathology attached to this molecular defect, the mechanisms leading to neurodegeneration in HD still remain largely speculative (3). Nevertheless, recent studies have suggested that abnormal interactions between the mutated huntingtin and other proteins could be involved in the pathogenesis of HD. Thus, huntingtin has been shown to interact with several proteins including a cytoplasmic protein that associates with microtubules, mitochondria, and synaptic vesicles (HAP-1, 4), glyceraldehyde phosphate dehydrogenase (GAPDH, 5), an unidentified calmodulinassociated protein (6), a ubiquitin-associated protein (HIP-2, 7), and a protein homologous to the yeast cytoskeleton-associated protein sla2p (HIP-1, 8). These observations suggest that alterations in glycolysis, vesicle trafficking, or apoptosis could all be pathological mechanisms involved in HD. However, direct and indirect evidence for defects in mitochondrial energy metabolism (complex II–III deficiency) has been increasingly compelling over the past decade (9–15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., and Tanzi, R. E. (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306, 234–238.

    Article  PubMed  CAS  Google Scholar 

  2. The Huntington’s Disease Collaborative Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  3. Sharp, A. H. and Ross, A. R. (1996) Neurobiology of Huntington’s disease. Neurobiol. Dis. 3, 3–15.

    Article  PubMed  CAS  Google Scholar 

  4. Gutekunst, C. A., Li, S. H., Yi, H., Ferrante, R. J., Li, X. J., and Hersch, S. M. (1998) The cellular and subcellular localization of huntingtin-associated protein 1 (HAP-1): comparison with huntingtin in rat and human. J. Neurosci. 18, 7674–7686.

    PubMed  CAS  Google Scholar 

  5. Burke, J. R., Enghild, J. J., Martin, M. E., Jou, Y.-S., Myers, R. M., Roses, A. D., Vance, J. M., and Strittmatter, W. J. (1996) Huntingtin and DRPLA proteins selectively intereact with the enzyme GAPDH. Nature Med. 2, 347–350.

    Article  PubMed  CAS  Google Scholar 

  6. Bao, J., Sharp, A., Wagster, M., Becher, M., Schilling, G., Ross, C., Dawson, V., and Dawson, T. (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc. Natl. Acad. Sci. USA 93, 5037–5042.

    Article  PubMed  CAS  Google Scholar 

  7. Kalchman, M. A., Graham, R. K., Xia, G., Koide, H. B., Hodgston, J. G., Graham, K. C., Goldberg, Y. P., Gietz, R. D., Pickart, C. M., and Hayden, M. R. (1996) Huntingtin is ubiquitized and interacts with a specific ubiquitin conjugated enzyme. J. Biol. Chem. 271, 19,385–19,394.

    Google Scholar 

  8. Kalchman, M. A., Koide, H. B., McCutcheon, K., Graham, R. K., Nichol, K., Nishiyama, K., Kazemi-Esfarjani, P., Lynn, F. C., Wellington, C., Metzler, M., Goldberg, Y. P., Kanazawa, I., Gietz, R. D., and Hayden, M. R. (1997) HIP 1, a human homolog of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat. Genet. 16, 44–53.

    Article  PubMed  CAS  Google Scholar 

  9. Brennan, W. A. J., Bird, E. D., and Aprille, J. R. (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J. Neurochem. 44, 1948–1950.

    Article  PubMed  CAS  Google Scholar 

  10. Browne, S. E., Bowling, A. C., McGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. K., Bird, E. D., and Beal, M. F. (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653.

    Article  PubMed  CAS  Google Scholar 

  11. Gu, M, Gash, M. T., Mann, V. M., Javoy-Agid, F., Cooper, J. M., and Schapira, A. H. (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 39, 385–389.

    Article  PubMed  CAS  Google Scholar 

  12. Jenkins, B. G., Koroshetz, W. J., Beal, M. F., and Rosen, B. R. (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43, 2689–2695.

    Article  PubMed  CAS  Google Scholar 

  13. Jenkins, B. G., Rosas, H. D., Chen, Y. C. I., Makabe, T., Myers, R., McDonald, M., Rosen, B. R., Beal, M. F., and Koroshetz, W. J. (1998) 1H-NMR spectroscopy studies of Huntington’s disease, correlation with CAG repeat numbers. Neurology 50, 1357–1365.

    Article  PubMed  CAS  Google Scholar 

  14. Koroshetz, W. J., Jenkins, B. G., Rosen, B. R., and Beal, M. F. (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann. Neurol. 41, 160–165.

    Article  PubMed  CAS  Google Scholar 

  15. Mann, V. M., Cooper, J. M., Javoy-Agid, F., Agid, Y., Jenner, P., and Schapira, A. H. V. (1990) Mitochondrial function and parental sex effect in Huntington’s disease. Lancet ii, 8717, 749.

    Article  Google Scholar 

  16. Coyle, J. T. and Schwarcz, R. (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea. Nature 263, 244–246.

    Article  PubMed  CAS  Google Scholar 

  17. McGeer, E. G. and McGeer, P. L. (1976) Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acid. Nature 263, 517–519.

    Article  PubMed  CAS  Google Scholar 

  18. Deckel, A. W., Robinson, R. G., Coyle, J. T., and Sanberg, P. R. (1983) Reversal of longterm locomotor abnormalities in the kainic acid model of Huntington’s disease by day 18 fetal striatal implants. Eur. J. Pharmacol. 93, 287–288.

    Article  PubMed  CAS  Google Scholar 

  19. Dunnett, S. B. and Iversen, S. D. (1982) Spontaneous and drug-induced rotation following localized 6-hydroxydopamine and kainic acid-induced lesion of the neostriatum. Neuropharmacology 21, 899–908.

    Article  PubMed  CAS  Google Scholar 

  20. Isacson, O., Dunnett, S. B., and Björklund, A. (1986) Behavioural recovery in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 83, 2728–2732.

    Article  PubMed  CAS  Google Scholar 

  21. Vonsattel, J.-P., Myers, R. H., and Stevens, T. J. (1985) Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577.

    Article  PubMed  CAS  Google Scholar 

  22. Harper, P. S. (1991) Huntington’s Disease (Harper, P. S., ed). London, W. B. Saunders.

    Google Scholar 

  23. Wellington, C. L., Brinkman, R. R., O’Kursky, J. R., and Hayden, M. R. (1997) Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol. 7, 979–1002.

    Article  PubMed  CAS  Google Scholar 

  24. Kremer, B., Weber, B., and Hayden, M. R. (1992) New insights into the clinical features, pathogenesis and molecular genetics of Huntington’s disease. Brain Pathol. 2, 321–335.

    Article  PubMed  CAS  Google Scholar 

  25. Thomson, P. D., Berardelli, A., Rothwell, J. C., Day, B. L., Dick, S. P. R., Benecke, R., and Marsden, C. D. (1988) The coexistence of bradykinesia and chorea in Huntington’s disease and its implications for theories of basal ganglia control of movement. Brain 111, 223–244.

    Article  Google Scholar 

  26. Podoll, K., Caspary, P., Lange, H. W., and Noth, J. (1988) Language functions in Huntington’s disease. Brain 111, 1475–1503.

    Article  PubMed  Google Scholar 

  27. Kowall, N. W., Ferrante, R. J., and Martin, J. B. (1987) Patterns of cell loss in Huntington’s disease. TINS 10, 24–29.

    Google Scholar 

  28. Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., and Martin, J. B. (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230, 561–563.

    Article  PubMed  CAS  Google Scholar 

  29. Hedreen, J. C. and Foldstein, S. E. (1995) Early loss of neostriatal neurons in Huntington’s disease. J. Neuropathol. Exp. Neurol. 54, 105–120.

    Article  PubMed  CAS  Google Scholar 

  30. Seto-Ohshima, A., Emson, P. C., Lawson, E., Mountjoy, C. Q., and Carrasco, L. H. (1988) Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease. Lancet i, 1252–1255.

    Article  Google Scholar 

  31. Ferrante, R. J., Kowall, N. W., and Richardson, E. P., Jr. (1991) Proliferative and degenerative changes in striatal spiny-neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunochemistry. J. Neurosci. 11, 3877–3887.

    PubMed  CAS  Google Scholar 

  32. Graveland, G. A., Williams, R. S., and DiFiglia, M. (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227, 770–773.

    Article  PubMed  CAS  Google Scholar 

  33. Bird, E. D. and Iversen, L. L. (1977) Neurochemical findings in Huntington’s chorea, in Essays in Neurochemistry and Neuropharmacology, Vol. 1 (Youdim, M. B. H., Sharman, D. F., Lovenberg, W., and Lagnado, J. R., eds.), John Wiley & Sons, New York, pp. 177–195.

    Google Scholar 

  34. Kish, S. J., Shannack, K., and Hornykiewicz, O. (1987) Elevated serotonin and reduced dopamine on subregionally divided Huntington’s disease striatum. Ann. Neurol. 22, 386–389.

    Article  PubMed  CAS  Google Scholar 

  35. Beal, M. F., Matson, W. R., Swartz, K. J., Gamache, P. H., and Bird, E. D. (1990) Kynurenin pathway measurments in Huntington’s diseased striatum: evidence for reduced kynurenic acid. J. Neurochem. 55, 1327–1339.

    Article  PubMed  CAS  Google Scholar 

  36. Beal, M. F., Kowall, N. W., Ellison, D. W., Swartz, K. J., McGarvey, U., Bird, E. D., and Martin, J. B. (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321, 168–171.

    Article  PubMed  CAS  Google Scholar 

  37. Beal, M. F., Ferrante, R. J., Swartz, K. J., and Kowall, N. W. (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J. Neurosci. 11, 1649–1659.

    PubMed  CAS  Google Scholar 

  38. Kanazawa, I., Tanaka, Y., and Cho, F. (1986) Choreic movements induced by unilateral kainate lesions of the striatum and L-Dopa administration in monkey. Neurosci. Lett. 71, 241–246.

    Article  PubMed  CAS  Google Scholar 

  39. Hantraye, P., Riche, D., Maziere, M., and Isacson, O. (1990) An experimental primate model of Huntington’s disease: anatomical and behavioural studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp. Neurol. 108, 91–104.

    Article  PubMed  CAS  Google Scholar 

  40. Hantraye, P., Riche, D., Maziere, M., and Isacson, O. (1992) Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 89, 4187–4191.

    Article  PubMed  CAS  Google Scholar 

  41. Ferrante, R. J., Kowall, N. W., Cipolloni, P. B., Storey, E., and Beal, M. F. (1993) Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp. Neurol. 119, 46–71.

    Article  PubMed  CAS  Google Scholar 

  42. Kendall, A. L., Rayment, F. D., Torres, E. M., Baker, H. F., Ridley, R. M., and Dunnett, S. B. (1998) Functional integration of striatal allografts in a primate model of Huntington’s disease. Nat. Med. 4, 727–729.

    Article  PubMed  CAS  Google Scholar 

  43. Schumacher, J. M., Hantraye, P., Brownell, A.-L., Riche, D., Madras, B. K., Davenport, P. D., Maziere, M., Elmaleh, D. R., Brownell, G. L., and Isacson, O. (1992) A primate model of Huntington’s disease: functional neural transplantation and CT-guided stereotactic procedures. Cell Transplant. 1, 313–322.

    PubMed  CAS  Google Scholar 

  44. Emerich, D. F., Winn, S. R., Hantraye, P., Peschanski, M., Chen, E.-Y, Chu, Y., McDermott, P., Baetge, E. E., and Kordower, J. H. (1997) Encapsulated CNTF-producing cells protect monkeys in a model of Huntington’s disease. Nature 386, 395–399.

    Article  PubMed  CAS  Google Scholar 

  45. Lundberg, C., Wictorin, K., and Björklund, A. (1994) Retrograde degenerative changes in the substantia nigra pars compacta following an excitotoxic lesion of the striatum. Brain Res. 644, 205–212.

    Article  PubMed  CAS  Google Scholar 

  46. Isacson, O., Hantraye, P., Riche, D., Schumacher, J. M., and Maziere, M. (1991) The relationship between symptoms and functional anatomy in the chronic neurodegenerative diseases: from pharmacological to biological replacement therapy in Hunington’s disease, in Intracerebral Transplantation in Movement Disorders (Lindvall, O., Björklund, A., and Widner, H., eds.), Elsevier, Amsterdam, pp. 231–244.

    Google Scholar 

  47. Kanazawa, I., Kimura, M., Mutrata, M., Tanaka, Y., and Cho, F. (1990) Choreic movements in the macaque monkey induced by kainic acid lesions of the striatum combined with L-Dopa. Brain 113, 509–535.

    Article  PubMed  Google Scholar 

  48. Paulson, G. W. (1976) Predictive tests in Huntington’s disease, in The Basal Ganglia (Yahr, M. D., ed.) Raven Press, New York, pp. 317–329.

    Google Scholar 

  49. Burns, L. H., Pakzaban, P., Deacon, T. W., Brownell, A. L., Tatter, S. B., Jenkins, B., and Isacson, O. (1995) Selective putaminal excitotoxic lesions in nonhuman primates model the movement disorder of Huntington disease. Neuroscience 64, 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  50. Johnson, T. N., Rosvold, H. E., and Mishkin, M. (1968) Projections from behaviorallydefined sectors of the prefrontal cortex to the basal ganglia, septum, and diencephalon in the monkey. Exp. Neurol. 21, 20–34.

    Article  PubMed  CAS  Google Scholar 

  51. Künzle, H. (1977) Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp. Brain Res. 30, 481–492.

    Article  PubMed  Google Scholar 

  52. Selemon, L. D. and Goldman-Rakic, P. S. (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 5, 776–794.

    PubMed  CAS  Google Scholar 

  53. Battig, K., Rosvold, H. E., and Mishkin, M. (1960) Comparison of the effects of frontal and caudate lesions on delayed response and alternation in monkeys. J. Comp. Physiol. Psychol. 53, 400–404.

    Article  PubMed  CAS  Google Scholar 

  54. Albin, R. L. and Greenamyre, J. T. (1992) Alternative excitotoxic hypotheses. Neurology 42, 733–738.

    Article  PubMed  CAS  Google Scholar 

  55. Beal, M. F., Swartz, K. J., Hyman, B. T., Storey, E., Finn, S. F., and Koroshetz, W. (1991) Aminooxyacetic acid results in excitotoxic lesions by a novel indirect mechanism. J. Neurochem. 57, 1068–1073.

    Article  PubMed  CAS  Google Scholar 

  56. Beal, M. F., Brouillet, E., Jenkins, B., Ferrante, R. J., Kowall, N. W., Miller, J. M., Storey, E., Srivastava, R., Rosen, B. R., and Hyman, B. T. (1993) Neurochemical and histological characterization of the striatal excitotoxic lesions produced by the mitochondrial toxins 3-nitropropionic acid. J. Neurosci. 13, 1481–1492.

    Google Scholar 

  57. Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen B., and Hyman, B. T. (1993) Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 61, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  58. Brouillet, E., Jenkins, B., Hyman, B., Ferrante, R. J., Kowall, N. W., Srivastava, R., Roy, D. S., Rosen, B., and Beal, M. F. (1993) Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60, 356–359.

    Article  PubMed  CAS  Google Scholar 

  59. Brouillet, E., Shinobu, L., McGarvey, U., and Beal, M. F. (1993b) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp. Neurol. 120, 89–94.

    Article  PubMed  CAS  Google Scholar 

  60. Brouillet, E., Hyman, B. T., Jenkins, B., Henshaw, R., Shulz, J. B., Sodhi, P., Rosen, B., and Beal, M. F. (1994) Systemic or local administration of azide produces striatal lesions by an energy impairment-induced excitotoxic mechanism. Exp. Neurol. 129, 175–182.

    Article  PubMed  CAS  Google Scholar 

  61. Greene, J. G., Porter, R. H. P., Eller, R. V., and Greenamyre, J. T. (1993) Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J. Neurochem. 61, 1151

    Article  PubMed  CAS  Google Scholar 

  62. Greene, J. G., Sheu, S. S., Gross, R. A., and Greenamyre, J.T(1998) 3-Nitropropionic acid exacerbates N-methyl-D-aspartate toxicity in striatal culture by multiple mechanisms. Neuroscience 84, 503–510.

    Article  PubMed  CAS  Google Scholar 

  63. Greene, J. G. and Greenamyre, J. T. (1995) Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate. J. Neurochem. 64, 430–436.

    Article  PubMed  CAS  Google Scholar 

  64. Greene, J. G. and Greenamyre, J. T. (1996) Manipulation of membrane potential modulates malonate-induced striatal excitotoxicity in vivo. J. Neurochem. 66, 637–643.

    Article  PubMed  CAS  Google Scholar 

  65. Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J., and Sabri, M. (1991) 3-Nitroproprionic acid exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18, 492–498.

    PubMed  CAS  Google Scholar 

  66. Novelli, A., Reilly, J. A., Lysko, P. G., and Hennebery, R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451, 205–212.

    Article  PubMed  CAS  Google Scholar 

  67. Schultz, J. B., Henshaw, D. R., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Rosen, B. R., and Beal, M.F (1995) 3-Acetylpyridine produces age-dependent excitotoxic lesions in rat striatum. J. Cereb. Blood Flow Metab. 14, 1024–1029.

    Article  Google Scholar 

  68. Zeevalk, G. D. and Nicklas, W. J. (1991) Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J. Pharmacol. Exp. Ther. 257, 870–878.

    PubMed  CAS  Google Scholar 

  69. Zeevalk, G. D. and Nicklas, W. J. (1992) Evidence that the loss of the voltage-dependent Mg++ block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism. J. Neurochem. 59, 1211–1220.

    Article  PubMed  CAS  Google Scholar 

  70. Zeevalk, G. D., Derr-Yellin, E., and Nicklas, W. J. (1995) NMDA receptor involvement in toxicity to dopamine neurons in vitro caused by the succinate dehydrogenase inhibitor 3-nitropropionic acid. J. Neurochem. 64, 455–458.

    Article  PubMed  CAS  Google Scholar 

  71. Beal, M. F. (1994) Neurochemistry and toxin models in Huntington’s disease. Curr. Opin. Neurol. 7, 542–546.

    Article  PubMed  CAS  Google Scholar 

  72. Garnett, E. S., Firnau, G., Nahmias, C., Carbotte, R., and Bartolucci, G. (1984) Reduced striatal glucose consumption and prolonged reaction time are early features in Huntington’s disease. J. Neurol. Sci. 65, 231–237.

    Article  PubMed  CAS  Google Scholar 

  73. Grafton, S. T., Mazziotta, J. C., Pahl, J. J., George-Hyslop, P. S., Haines, J. L., Gusella, J., Hoffman, J. M., Baxter, L. R., and Phelps, M. E. (1990) A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington’s disease. Ann. Neurol. 28, 614–621.

    Article  PubMed  CAS  Google Scholar 

  74. Hayden, M. R., Martin, W. R. W., Stoessl, A. J., Clark, C., Hollenberg, S., Adam, M. J., Ammann, W., Harrop, R., Rogers, J., Ruth, T., Sayre, C., and Pate, B. D. (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36, 888–894.

    Article  PubMed  CAS  Google Scholar 

  75. Kuhl, D. E., Phelps, M. E., Markham, C. H., Metter, E. J., Riege, W. H., and Winter, J. (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann. Neurol. 12, 425–434.

    Article  PubMed  CAS  Google Scholar 

  76. Kuwert, T., Lange, H. W., Langen, K. J., Herzog, H., Aulich, A., and Feinendegen, L. E. (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113, 1405–1423.

    Article  PubMed  Google Scholar 

  77. Kuwert, T., Lange, H. W., Boecker, H., Titz, H., Herzog, H., Aulich, A., Wang, B. C., Nayak, U., and Feinendegen, L. E. (1993) Striatal glucose consumption in chorea-free subjects at risk of Huntington’s disease. J. Neurol. 241, 31–36.

    Article  PubMed  CAS  Google Scholar 

  78. Mazziotta, J. C., Phelps, M. E., Pahl, J. J., Huang, S. C., Baxter, L. R., Riege, W. H., Hoffman, J. M., Kuhl, D. E., Lanto, A. B., Wapenski, J. A., and Markham, C. H. (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N. Engl. J. Med. 316, 357–362.

    Article  PubMed  CAS  Google Scholar 

  79. Gould, D. H. and Gustine, D. L. (1982) Basal ganglia degeneration, myelin alterations, enzyme inhibition induced in ice by the plant toxin 3-nitropropionic acid. Neuropathol. Appl. Neurobiol. 8, 377–393.

    Article  PubMed  CAS  Google Scholar 

  80. Gould, H., Wilson, M. P., and Hamar, D. W. (1985) Brain enzyme and clinical alterations induced in rats and mice by nitroaliphatic toxicants. Tox. Lett. 27, 83–89.

    Article  CAS  Google Scholar 

  81. Hamilton, B. F. and Gould, D. H. (1987) Correlation of morphological brain lesions with physiological alterations and blood—brain barrier impairment by 3-nitropropionic acid toxicity in rats. Acta Neuropathol. (Berl.) 74, 67–74.

    Article  CAS  Google Scholar 

  82. Guyot, M.-C., Hantraye, P., Dolan, R., Palfi, S., Mazière, M., and Brouillet, E. (1997) Quantifiable bradykinesia, gait abnormalities and Huntington’s disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Neurosci. 79, 45–56.

    Article  CAS  Google Scholar 

  83. Borlongan, C. V., Koutousis, T. K., Freeman, T. B., Cahill, D. W., and Sanberg, P. R. (1995) Behavioral pathology induced by repreated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington’s disease. Brain Res. 697, 254–257.

    Article  PubMed  CAS  Google Scholar 

  84. Hantraye, P., Loc’h, C., Maziere, B., Khalili-Varasteh, M., Crouzel, C., Fournier, D., Yorke, J. C., Riche, D., Isacson, O., and Maziere, M. (1992) 6-[18F]Fluoro-L-Dopa uptake and [76Br]bromolisuride binding in the excitotoxically lesioned caudate—putamen of nonhuman primates studied using positron emission tomography. Exp. Neurol. 115, 218–227.

    Article  PubMed  CAS  Google Scholar 

  85. Brownell, A.-L., Hantraye, P., Wüllner, U., Hamberg, L., Shoup, T., Elmaleh, D. R., Frim, D. M., Madras, B. K., Brownell, G. L., Rosen, B. R., and Isacson, O. (1994) PET- and MRI-based assessment of glucose utilization, dopamine receptor binding and hemodynamic changes after lesions to the caudate—putamen in primates. Exp. Neurol. 125, 41–51.

    Article  PubMed  CAS  Google Scholar 

  86. Brouillet, E., Hantraye, P., Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., and Beal, M. F. (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. USA 92, 7105–7109.

    Article  PubMed  CAS  Google Scholar 

  87. Palfi, S., Ferrante, R. J., Brouillet, E., Beal, M. F., Dolan, R., Guyot, M. C., Peschanski, M., and Hantraye, P. (1996) Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. J. Neurosci. 16, 3019–3025.

    PubMed  CAS  Google Scholar 

  88. Palfi, S., Condé, F., Riche, D., Brouillet, E., Dautry, C., Mittoux, V., Chibois, A., Peschanski, M., and Hantraye, P. (1998) Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington’s disease. Nat. Med. 4, 963–966.

    Article  PubMed  CAS  Google Scholar 

  89. Mittoux, V., Joseph, J. M., Condé, F., Palfi, S., Zurn, A., Dautry, C., Poyot, T., Peschanski, M., Aebischer, P., and Hantraye, P. (1998) Encapsulated CNTF-producing fibroblasts reverse motor and cognitive deficits and protect striatal neurons in a chronic primate model of Huntington’s disease. Soc. Neurosci. Abstr. 24, 973.

    Google Scholar 

  90. Diamond, A. (1990) Developmental time course in human infants and infant monkeys, and the neural bases of inhibitory control in reaching. Ann. NY Acad. Sci. 608, 637–669.

    Article  PubMed  CAS  Google Scholar 

  91. Schneider, J. S. (1992). Behavioral and neuropathological consequences of chronic exposure to low doses of the dopaminergic neurotoxin MPTP, in The Vulnerable Brain and Environmental Risks (Isaacson, R. L. and Jensen, K. F., eds.), New York, Plenum Press, pp. 293–308.

    Chapter  Google Scholar 

  92. Taylor, J. R., Elsworth, J. D., Roth, R. H., Sladek, J. R., Jr., and Redmond, D. E., Jr. (1990) Cognitive and motor deficits in the acquisition of an object retrieval/detour task in MPTP-treated monkeys. Brain 113, 617–637.

    Article  PubMed  Google Scholar 

  93. Sato, S., Gobel, G. T., Honkaniemi, J., Li, Y., Kondo, T., Murakami, K., Sato, M., Copin, J.-C., and Chan, P. H. (1997) Apoptosis in the striatum of rats following intraperitoneal injection of 3-nitropropionic acid. Brain Res. 745, 343–347.

    Article  PubMed  CAS  Google Scholar 

  94. Alexi, T., Hughes, P. E., Knusel, B., and Tobin, A. J. (1998) Metabolic compromise with systemic 3-nitropropionic acid produces striatal apoptosis in Sprague—Dawley rats but not in BALB/c ByJ mice. Exp. Neurol. 153, 74–93.

    Article  PubMed  CAS  Google Scholar 

  95. Palfi, S., Riche, D., Brouillet, E., Guyot, M.-C., Mary, V., Wahl, F., Peschanski, M., Stutzmann, J. M., and Hantraye, P. (1997) Riluzole reduces incidence of abnormal movements but not striatal cell death in a primate model of progressive striatal degeneration. Exp. Neurol. 146, 135–141.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hantraye, P., Palfi, S., Mittoux, V., Dautry, C., Condé, F., Brouillet, E. (2000). Replicating Huntington Disease’s Phenotype in Nonhuman Primates. In: Emerich, D.F., Dean, R.L., Sanberg, P.R. (eds) Central Nervous System Diseases. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-691-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-691-1_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-152-3

  • Online ISBN: 978-1-59259-691-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics