Skip to main content

Delivery of Therapeutic Genes to Brain and Intracerebral Tumors

  • Chapter
Gene Therapy for Neurological Disorders and Brain Tumors

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Delivery is a major issue in the treatment of neurological disease and tumors affecting the central nervous system (CNS). Delivery of genetic material to target cells at the molecular level has been reviewed elsewhere (please see the preceding chapters for reviews of new vectors and toxic genes for tumor therapy). Here we will address the macroscopic problem of delivery of vectors to brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barba, D., Hardin, J., Sadelain, M., and Gage, F. H. (1994) Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc. Natl. Acad. Sci. USA 91, 4348–4352.

    Article  PubMed  CAS  Google Scholar 

  2. Freeman, S. M., Abboud, C. N., Whartenby, K. A., Packman, C. H., Koeplin, D. S., Moolten, F. L., and Abraham, G. N. (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283.

    PubMed  CAS  Google Scholar 

  3. Brightman, M. W., Hori, M., Rapoport, S. I., Reese, T. S., and Westergaard, E. (1973) Osmotic opening of tight junctions in cerebral endothelium. J. Comp. Neurol. 152, 317–325.

    Article  PubMed  CAS  Google Scholar 

  4. Long, D. M. (1979) Capillary ultrastructure in human metastatic brain tumors. J. Neurosurg. 51, 53–58.

    Article  PubMed  CAS  Google Scholar 

  5. Rapoport, S. I., ed. (1976) Blood-Brain Barrier in Physiology and Medicine. Raven, New York.

    Google Scholar 

  6. Neuwelt, E. A., ed. (1989) Implications of the Blood-Brain Barrier and Its Manipulation: vol. 1, Basic Science Aspects: vol. 2, Clinical Implications, Plenum, New York.

    Google Scholar 

  7. Neuwelt, E. A., Pagel, M. A., and Dix, R. D. (1991) Delivery of untraviolet-inactivated 355-herpervirus across an osmotically modified blood-brain barrier. J. Neurosurg. 74, 475–479.

    Article  PubMed  CAS  Google Scholar 

  8. Stewart, D. J. (1994) A critique of the role of the blood-brain barrier in the chemotherapy of human brain tumors. J. Neurooncol. 20, 121–139.

    Article  PubMed  CAS  Google Scholar 

  9. Bergström, M., Collins, V. P., Ehrin, E., Ericson, K., Eriksson, L., Greitz, T., et al. (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J. Comput. Assist. Tomogr. 7, 1062–1066.

    Article  PubMed  Google Scholar 

  10. Burger, P. C., Heinz, E. R., Shibata, T., and Kleihues, P. (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J. Neurosurg. 68, 698–704.

    Article  PubMed  CAS  Google Scholar 

  11. Kelly, P. J., Daumas-Duport, C., Kispert, D. B., Kall, B. A., Scheithauer, B. W., and Illig, J. J. (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J. Neurosurg. 66, 865–874.

    Article  PubMed  CAS  Google Scholar 

  12. Groothuis, D. R., Vriesendorp, F. J., Kupfer, B., Warnke, P. C., Lapin, G. D., Kuruvilla, A., et al. (1991) Quantitative measurements of capillary transport in human brain tumors by computed tomography. Ann. Neurol. 30, 581–588.

    Article  PubMed  CAS  Google Scholar 

  13. Gumerlock, M. K. and Neuwelt, E. A. (1990) The effects of anesthesia on osmotic blood-brain barrier disruption. Neurosurgery 26, 268–277.

    Article  PubMed  CAS  Google Scholar 

  14. Jellinger, K. (1983) Glioblastoma multiforme: morphology and biology, in Oncology of the Nervous System (Walker, M. D., ed.) Martinus Nijhoff, Boston, pp. 285–340.

    Google Scholar 

  15. Levin, V. A., Clancy, T. P., Ausman, J. I., and Rall, D. P. (1972) Uptake and distribution of 3H-methotrexate by the murine ependymoblastoma. Natl. Cancer Inst. 488, 875–883.

    Google Scholar 

  16. Neuwelt, E. A., Specht, H. D., and Hill, S. A. (1986) Permeability of human brain tumor to 99mTc-glucoheptonate and 99mTc-albumin: implications for monoclonal antibody therapy. J. Neurosurg. 65, 194–198.

    Article  PubMed  CAS  Google Scholar 

  17. Tator, C. H. (1972) Chemotherapy of brain tumors. Uptake of tritiated methotrexate by a transplantable intracerebral ependymoblastoma in mice. J. Neurosurg. 37, 1–8.

    Article  PubMed  CAS  Google Scholar 

  18. Warnke, P. C., Friedman, H. S., Bigner, D. D., and Groothuis, D. R. (1987) Simultaneous measurements of blood flow and blood-to-tissue transport in xenotransplanted medulloblastomas. Cancer Res. 47, 1687–1690.

    PubMed  CAS  Google Scholar 

  19. Benjamin, R. S., Wiernik, P. H., and Bachur, N. R. (1974) Adriamycin chemotherapy-efficacy, safety, and pharmacologic basis of an intermittent single high-dosage schedule. Cancer 33, 19–27.

    Article  PubMed  CAS  Google Scholar 

  20. Gumerlock, M. K. (1987) Principles of chemotherapy in brain neoplasia, in Therapy of Malignant Brain Tumors ( Jellinger, K., ed.) Springer-Verlag, Vienna, pp. 277–348.

    Chapter  Google Scholar 

  21. Stewart, D. J., Richard, M. T., Hugenholtz, H., Dennery, J. M., Belanger, R., Gerin-Lajoie, J., et al. (1984) Penetration of VP-16 (etoposide) into human intracerebral and extracerebral tumors. J. Neurooncol. 2, 289.

    Google Scholar 

  22. Ott, R. J., Brada, M., Flower, M. A., Babich, J. W., Cherry, S. R., and Deehan, B. J. (1991) Measurements of blood-brain barrier permeability in patients undergoing radiotherapy and chemotherapy for primary cerebral lymphoma. Eur. J. Cancer. 27, 1356–1361.

    Article  PubMed  CAS  Google Scholar 

  23. Jain, R. K. (1994) Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65.

    Article  PubMed  CAS  Google Scholar 

  24. Leunig, M., Yuan, F., Menger, M. D., Boucher, Y., Goetz, A. E., Messmer, K., and Jain, R. K. (1992) Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS 174T in SCID mice. Cancer Res. 6553–6560.

    Google Scholar 

  25. Curti, B. D., Urba, W. J., Alvord, W. G., Janik, J. E., Smith, J. W. 2d, Madara, and K., Longo, D. L. (1993) Interstitial pressure of subcutaneous nodules im melanoma and lymphoma patients: changes during treatment. Cancer Res. 53, 2204–2207.

    PubMed  CAS  Google Scholar 

  26. Torres-Filho, I. P., Leunig, M., Yuan, F., Intaglietta, M., and Jain, R. K. (1994) Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl. Acad. Sci. USA 91, 2081–2085.

    Article  PubMed  CAS  Google Scholar 

  27. Arbit, E., DiResta, G. R., Bedford, R. F., Shah, N. K., and Galicich, J. H. (1989) Intraoperative measurement of cerebral and tumor blood flow with laser-Doppler flowmetry. Neurosurgery 24, 166–170.

    Article  PubMed  CAS  Google Scholar 

  28. Drummond, J. C., and Shapiro, H. M. (1994) Cerebral physiology, in Anesthesia. ( Miller, R. D. ed.). Churchill Livingstone, New York, pp. 689–730.

    Google Scholar 

  29. Blasberg, R. G. (1980) Changes in blood-brain transfer parameters induced by hyperosmolar intracarotid infusion and by metastatic tumor growth, in The Cerebral Microvasculature ( Eisenberg, H. M. and Suddith, R. L. eds.). Plenum, New York, pp. 307–319.

    Chapter  Google Scholar 

  30. Groothuis, D. R., Fischer, J. M., Lapin, G., Bigner, D. D., and Vick, N. A. (1982) Permeability of different experimental brain tumor models to horseradish peroxidase. J. Neuropathol. Exp. Neurol. 41, 164–185.

    Article  PubMed  CAS  Google Scholar 

  31. Myklebust, A., Helseth, A., Breistol, K., Hall, W. A., and Fodstad, 0. (1994) Nude rat models for human tumor metastasis to CNS: procedures for intracarotid delivery of cancer cells and drugs. J. Neurooncol. 21, 215–224.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, R. D., Price, J. E., Fujimaki, T., Bucana, C. D., and Fidler, I. J. (1992) Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am. J. Pathol. 141, 1115–1124.

    PubMed  CAS  Google Scholar 

  33. Neuwelt, E. A., Frenkel, E. P., D’Agostino, A. N., Carney, D. N., Minna, J. D., Barnett, P. A., and McCormick, C. I. (1985) Growth of human lung tumor in the brain of the nude rat as a model to evaluate antitumor agent delivery across the blood-brain barrier. Cancer Res. 45, 2827–2833.

    PubMed  CAS  Google Scholar 

  34. Neuwelt, E. A., Weissleder, R., Nilaver, G., Kroll, R. A., Roman-Goldstein, S., Szumowski, J., et al. (1994) Delivery of virus-sized iron oxide particles to rodent CNS neurons. Neurosurgery 34, 777–784.

    Article  PubMed  CAS  Google Scholar 

  35. Barnett, P. A., Roman-Goldstein, S., Ramsey, F., McCormick, C., Sexton, G., Szumowski, J., and Neuwelt, E. A. (1995) Differential permeability and quantitative MR imaging of a human lung carcinoma brain xenograft in the nude rat. Am. J. Pathol. 146, 436–449.

    PubMed  CAS  Google Scholar 

  36. Boviatsis, E. J., Chase, M., Wei, M. X., Tamiya, T., Hurford Jr., R. K. Kowall, N. W., et al. (1994) Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors. Hum. Gene Ther. 5, 183–191.

    Article  PubMed  CAS  Google Scholar 

  37. Chiocca, E. A., Choi, B. B., Cai, W., DeLuca, N. A., Schaffer, P. A., DiFiglia, M., Breakefield, X. O., and Martuza, F. L. (1990) Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol. 2, 739–746.

    PubMed  CAS  Google Scholar 

  38. Davidson, B. L., Allen, E. D., Kozarsky, K. F., Wilson, J. M., and Roessler, B. J. (1993) A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nature Genet. 3, 219–223.

    Article  PubMed  CAS  Google Scholar 

  39. Huang, Q., Vonsattel, J.-P., Schaffer, P. A., Martuza, R. L., Breakefield, X. O., and DiFiglia, M. (1992) Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: a light and electron microscopic study. Exp. Neurobiol. 115, 303–316.

    Article  CAS  Google Scholar 

  40. Ram, Z., Culver, K. W., Walbridge, S., Blaese, R. M., and Oldfield, E. H. (1993) In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res. 53, 83–88.

    CAS  Google Scholar 

  41. Chen, S-H., Shine, H. D., Goodman, J. C., Grossman, R. G., and Woo, S. L. C. (1994) Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci. USA 91, 3054–3057.

    Article  CAS  Google Scholar 

  42. Markert, J. M., Malick, A., Coen, D. M., and Martuza, R. L. (1993) Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 32, 597–603.

    Article  PubMed  CAS  Google Scholar 

  43. Martuza, R. L., Malick, A., Markert, J. M., Ruffner, K. L., and Coen, D. M. (1991) Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854–856.

    Article  PubMed  CAS  Google Scholar 

  44. Short, M. P., Choi, B. C., Lee, J. K., Malick, A., Breakefield, X. O., and Martuza, R. L. (1990) Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J. Neurosci. Res. 27, 427–433.

    Article  PubMed  CAS  Google Scholar 

  45. Culver, K. W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E. H., and Blaese, R. M. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1549–1552.

    Google Scholar 

  46. Ezzeddine, Z. T., Martuza, R. L., Planka, D., Short, M. P., Malick, A., Chen, B., and Breakefield, X. O. (1991) Selective killing of glioma cells in culture and in vivo by retro-virus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 3, 608–614.

    PubMed  CAS  Google Scholar 

  47. Ram, Z., Culver, K. W., Oshiro, E. M., Viola, J. J., DeVroom, H. L., Otto, E., et al. (1995) Summary of results and conclusions of the gene therapy of malignant brain tumors clinical study. Scientific Program, The American Association of Neurological Surgeons, 230.

    Google Scholar 

  48. Bobo, R. H., Laske, D. W., Akbasak, A., Morrison, P. F., Dedrick, R. L., and Oldfield, E. H. (1994) Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 91, 2076–2080.

    Article  PubMed  CAS  Google Scholar 

  49. Laske, D. W., Youle, R. J., Ilercil, O., Lieberman, D. M., Reynolds, J. C., and Stewart, P. A., (1995) Clinical experience with convection enhanced drug delivery in the brain. Neurosurgery 35, 576 (abstract).

    Google Scholar 

  50. Kroll, R. A., Pagel, M. A., Muldoon, L. L., and Neuwelt, E. A. (1986) Increasing volume of distribution in brain with interstitial infusion: dose, rather than convection, may be the most important factor. J. Neurosurg. 38, 746–754.

    Article  Google Scholar 

  51. Lieberman, D. M., Laske, D. W., Morrison, P. F., Bankiewicz, K. S., and Oldfield, E. H. (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg. 82, 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  52. Shen, T., Weissleder, R., Papisov, M., Bogdanov, A., and Brady, T. J. (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. M.R.M. 29, 599–604.

    Article  CAS  Google Scholar 

  53. Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., and Josephson, L. (1990) Ultrasmall superparamagnetic iron oxide. Characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493.

    PubMed  CAS  Google Scholar 

  54. Muldoon, L. L., Nilaver, G., Kroll, R. A., Pagel, M. A., Breakefield, X. O., Chiocca, E. A., et al. (1995) Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus and iron oxide nanoparticles to normal rat brain. Am. J. Pathol. 147, 1840–1851.

    PubMed  CAS  Google Scholar 

  55. Ho, D. Y. and Mocarski, E. S. (1988) Beta galactosidase as a marker in the peripheral and neural tissues of the herpes simplex virus vectors. Virology 167, 279–283.

    Article  PubMed  CAS  Google Scholar 

  56. Coen, D. M., Goldstein, D. J., and Weller, S. K. (1989) Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob. Agents Chemother. 33, 1395–1399.

    Article  PubMed  CAS  Google Scholar 

  57. Nilaver, G., Muldoon, L. L., Kroll, R. A., Pagel, M. A., Breakefield, X. O., Davidson, B. L., and Neuwelt, E. A. (1995) Delivery of herpesvirus and adenovirus to nude rat intracerebral tumors following osmotic blood-brain barrier disruption. Proc. Natl. Acad. Sci. USA 92, 9829–9833.

    Article  PubMed  CAS  Google Scholar 

  58. Rapoport, S. I., Fredericks, W. R., Ohno, K., and Pettigrew, K. D. (1980) Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am. J. Physiol. 238, R421 - R431.

    PubMed  CAS  Google Scholar 

  59. Rapoport, S. I., and Robinson, P. J. (1986) Tight-junctional modification as the basis of osmotic opening of the blood-brain barrier. Ann. NY Acad. Sci. 481, 250–267.

    Article  PubMed  CAS  Google Scholar 

  60. Ziylan, Y. Z., Robinson, P. J., and Rapoport, S. I. (1983) Differential blood-brain barrier permeabilities to [14C] sucrose and [3H]insulin after osmotic opening in the rat. Exp. Neurol. 79, 845–857.

    Article  PubMed  CAS  Google Scholar 

  61. Dahlborg, S. A., Neuwelt, E. A., Henner, W. D., Crossen, J. R., Tableman, M., and Petrillo, A. (1996) Non-AIDS primary CNS lymphoma: The first example of durable response in a primary brain tumor using enhanced chemotherapy delivery without cognitive loss and without radiotherapy. Cancer J. Sci. Am. 2, 166–174.

    PubMed  CAS  Google Scholar 

  62. Neuwelt, E. A. and Hill, S. A. (1987) Chemotherapy administered in conjunction with osmotic blood-brain barrier modification in patients with brain metastases. J. Neurooncol. 4, 195–207.

    Article  PubMed  CAS  Google Scholar 

  63. Neuwelt, E. A., Goldman, D., Dahlborg, S. A., Crossen, J., Ramsey, F., Goldstein, S. M., Braziel, R., and Dana, B. (1991) Primary CNS lymphoma treated with osmotic blood-brain barrier disruption: prolonged survival and preservation of cognitive function. J. Clin. Oncol. 9, 1580–1590.

    PubMed  CAS  Google Scholar 

  64. Doran, S. E., Dan Ren, X., Betz, A. L., Pagel, M. A., Neuwelt, E. A., Roessler, B. J., and Davidson, B. L. (1995) Gene expression from recombinant viral vectors in the CNS following blood-brain barrier disruption. Neurosurgery 36, 965–970.

    Article  PubMed  CAS  Google Scholar 

  65. Raymond, J. J., Robertson, D. M., and Dinsdale, H. B. (1986) Pharmacological modification of bradykinin induced breakdown of the blood-brain barrier. Can. J. Neurol. Sci. 13, 214–220.

    PubMed  CAS  Google Scholar 

  66. Doctrow, S. R., Abelleira, S. M., Curry, L. A., Heller-Harrison, R., Kozarich, J. W., Malfroy, B., et al. (1994) The bradykinin analog RMP-7 increases intracellular free calcium levels in rat brain microvascular endothelial cells. J. Pharm. Exp. Ther. 271, 229–237.

    Google Scholar 

  67. Elliott, P. J., Hayward, N. J., Dean, R. L., Blunt, D. G., and Bartus, R. T. (1996) Intravenous RMP-7 selectively increases uptake of carboplatin into rat brain tumors. Cancer Res. 56, 3998–4005.

    PubMed  CAS  Google Scholar 

  68. Sanovich, E., Bartus, R. T., Friden, P. M., Dean, R. L., Le, H. Q., and Brightman, M. W. (1995) Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res. 705, 125–135.

    Article  PubMed  CAS  Google Scholar 

  69. Nakano, S., Matsukado, K., and Black, K. L. (1996) Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide. Cancer Res. 56, 4027–4031.

    PubMed  CAS  Google Scholar 

  70. Inamura, T. and Black, K. L. (1994) Bradykinin selectively opens blood-tumor barrier in experimental brain tumors../. Cereb. Blood Flow Metab. 14, 862–870.

    Article  CAS  Google Scholar 

  71. Inamura, T., Nomura, T., Bartus, R. T., and Black, K. L. (1994) Intracarotid infusion of RMP-7, a bradykinin analog: a method for selective drug delivery to brain tumors. J. Neurosurg. 81, 752–758.

    Article  PubMed  CAS  Google Scholar 

  72. Matsukado, K., Inamura, T., Nakano, S., Fukui, M., Bartus, R. T., and Black, K. L. (1996) Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 39, 125–133.

    Article  PubMed  CAS  Google Scholar 

  73. Nomura, T., Inamura, T., and Black, K. L. (1994) Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors. Brain Res. 659, 62–66.

    Article  PubMed  CAS  Google Scholar 

  74. Rainov, N. G., Zimmer, C., Chase, M., Kramm, C. M., Chiocca, E. A., Weissleder, R., and Breakefield, X. O. (1995) Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms. Hum. Gene Ther. 6, 1543–1552.

    Article  PubMed  CAS  Google Scholar 

  75. Kroll, R. A., Pagel, M. A., Roman-Goldstein, S., Muldoon, L. L., and Neuwelt, E. A. (1997) Improving delivery of chemotherapy to intracerebral tumor and surrounding brain: physiologic modification of the BBB vs parmacologic modification of the BTB, submitted for publication.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muldoon, L.L., Kroll, R.A., Pagel, M.A., Roman-Goldstein, S., Neuwelt, E.A. (1998). Delivery of Therapeutic Genes to Brain and Intracerebral Tumors. In: Chiocca, E.A., Breakefield, X.O. (eds) Gene Therapy for Neurological Disorders and Brain Tumors. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-478-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-478-8_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5314-1

  • Online ISBN: 978-1-59259-478-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics