Skip to main content

Thrombospondin as an Inhibitor of Angiogenesis

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Most normal, healthy adult tissues exist in a state of vascular quiescence that is sustained by a combination of influences that include embryonic factors (1), associated cells (2) and an overall balance of angiogenic factors in which inhibitors predominate over inducers (3). Thrombospondin (TSP) is one of a small number of naturally occurring inhibitors of angiogenesis that is well-positioned to contribute to this maintenance of vascular quiescence in normal tissues, and whose loss in pathologic conditions, particularly cancer, contributes to increased neovascularization. First identified over two decades ago as a secretory product of thrombin-stimulated platelets (4,5) TSP is now known to be secreted by a wide array of cell types, including endothelial, fibroblast, smooth muscle, glial, keratinocyte, and inflammatory cells, and to participate in diverse biological processes, including coagulation, fibrinolysis, neurite outgrowth and nerve regeneration, tumor growth and metastasis, embryonic development, differentiation, inflammation, and angiogenesis (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan, D. (1997) Signaling vascular morphogenesis and maintainence. Science 277, 48–50.

    Article  PubMed  CAS  Google Scholar 

  2. Beck, L. and D’Amore, P. A. (1997) Vascular development: cellular and molecular recognition. FASEB J. 11, 365–373.

    CAS  Google Scholar 

  3. Bouck, N., Stellmach, V., and Hsu, S. (1996) How tumors become angiogenic. Adv. Cancer Res. 69, 135–174.

    Article  PubMed  CAS  Google Scholar 

  4. Baenziger, N., Brodie, G., and Majerus, P. (1972) Isolation and properties of thrombin-sensitive protein of human platelets. J. Biol. Chem. 247, 2723–2731.

    PubMed  CAS  Google Scholar 

  5. Baenziger, N., Brodie, G., and Majerus, P. (1971) A thrombin-sensitive protein of human platelet membranes. Proc. Natl. Acad. Sci. USA 68, 240–243.

    Article  PubMed  CAS  Google Scholar 

  6. Bornstein, P. (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J. Cell Biol. 130, 503–506.

    Article  PubMed  CAS  Google Scholar 

  7. Bornstein, P. and Sage, E. H. (1994) Thrombospondins. Methods Enzymol. 245, 62–85.

    Article  PubMed  CAS  Google Scholar 

  8. Lawler, J. (1986) Structural and functional properties of thrombospondin. Blood 67, 1197–1209.

    PubMed  CAS  Google Scholar 

  9. Tuszynski, G. P. and Nicosia, R. F. (1996) Role of thrombospondin-1 in tumor progression and angiogenesis. Bioessays 18, 71–76.

    Article  PubMed  CAS  Google Scholar 

  10. Roberts, D. D. (1996) Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J. 10, 1183–1191.

    CAS  Google Scholar 

  11. Lahav, J. (1993) Functions of thrombospondin and its involvement in physiology and pathology. Biochim. Biophys. Acta. 1182, 1–14.

    Article  PubMed  CAS  Google Scholar 

  12. Frazier, W. A. (1998) Thrombospondin as a regulator of angiogenesis, in Tumor Angiogenesis and Microcirculation (Voest, E. E. and D’Amore, P. A., eds.), Marcel Dekker, New York, in press.

    Google Scholar 

  13. DiPietro, L. A. (1997) Thrombospondin as a regulator of angiogenesis, in Regulation ofAngiogenesis (Goldberg, T. D. and Rosen, E. M., eds.), Birkhauser Verlag, Basel, pp. 295–313.

    Chapter  Google Scholar 

  14. Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., and Bouck, N. (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J. Cell Biol. 122, 497–511.

    Article  CAS  Google Scholar 

  15. Rastinejad, F., Polverini, P. J., and Bouck, N. P. (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355.

    Article  PubMed  CAS  Google Scholar 

  16. Good, D. J., Polverini, P. J., Rastinejad, F., Le Beau, M. M., Lemons, R. S., Frazier, W. A., and Bouck, N. P. (1990) Tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87, 6624–6628.

    Article  PubMed  CAS  Google Scholar 

  17. Lamszus, K., Joseph, A., Jin, L., Yao, Y., Chowdhury, S., Fuchs, A., et al. (1996) Scatter factor binds to thrombospondin and other extracellular matrix components. Am. J. Pathol. 149, 805–819.

    PubMed  CAS  Google Scholar 

  18. Iruela-Arispe, M. L. and Dvorak, H. F. (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb. Haemost. 78, 672–677.

    PubMed  CAS  Google Scholar 

  19. Volpert, O. V., Lawler, J., and Bouck, N. P. (1997) A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental lung metastases via thrombospondin-1. Proc. Natl. Acad. Sci. USA 95, 6343–6348.

    Google Scholar 

  20. BenEzra, D., Griffin, B. W., Maftzir, G., and Aharonov, O. (1993) Thrombospondin and in vivo angiogenesis induced by basic fibroblast growth factor or lipopolysaccharide. Invest. Opthalmol. Vis. Sci. 34, 3601–3608.

    CAS  Google Scholar 

  21. BenEzra, D. and Maftzir, G. (1996) Antibodies to IL-1 and TNF-alpha but not to bFGF or VEGF inhibit angiogenesis. Invest. Ophthalmol. Vis. Sci. 37, S1015.

    Google Scholar 

  22. Murphy-Ullrich, J. E., Schultz-Cherry, S., and Hook, M. (1992) Transforming growth factor-B com-plexes with thrombospondin. Mol. Biol. Cell. 3, 181–188.

    PubMed  CAS  Google Scholar 

  23. Reed, M. J., Iruela-Arispe, L., O’Brien, E. R., Truong, T., LaBell, T., Bornstein, P., and Sage, E. H. (1995) Expression of thrombospondins by endothelial cells. Injury is correlated with TSP-1. Am. J. Pathol. 147, 1068–1080.

    Google Scholar 

  24. O’Shea, K. S. and Dixit, V. M. (1988) Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo. J. Cell Biol. 107, 2737–2748.

    Article  Google Scholar 

  25. Saglio, S. D. and Slayter, H. S. (1982) Use of radioimmunoassay to quantify thrombospondin. Blood 59, 162–166.

    PubMed  CAS  Google Scholar 

  26. Hsu, S. C., Volpert, O. V., Steck, P. A., Mikkelsen, T., Polverini, P. J., Rao, S., Chou, P., and Bouck, N. P. (1996) Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res. 56, 5684–5691.

    Google Scholar 

  27. Dameron, K. M., Volpert, O. V., Tainsky, M. A., and Bouck, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584.

    Google Scholar 

  28. Campbell, S. C., Volpert, O. V., Ivanovich, M., and Bouck, N. P. (1998) Molecular mediators of angiogenesis in bladder cancer. Cancer Res. 58, 1298–1304.

    PubMed  CAS  Google Scholar 

  29. Stellmach, V., Volpert, O. V., Crawford, S. E., Lawler, J., Hynes, R. O., and Bouck, N. (1996) Tumor suppressor genes and angiogenesis: the role of P53 in fibroblasts. Eur. J. Cancer 32A, 2394–2400.

    Google Scholar 

  30. Hsu, S. C. (1997) Chromosome 10 controls a major angiogenic switch in the progression of human glioblastomas via thrombospondin-1. Thesis dissertation. Northwestern University, Chicago.

    Google Scholar 

  31. Polverini, P. J., DiPietro, L. A., Dixit, V. M., Hynes, R. O., and Lawler, J. (1995) Thrombospondin-1 knockout mice showed delayed organization and prolonged neovascularization of skin wounds. FASEB J. 9, 272a.

    Google Scholar 

  32. Schultz-Cherry, S. and Murphy-Ullrich, J. E. (1993) Thrombospondin causes activation of latent transforming growth factor beta secreted by endothelial cells by a novel mechanism. J. Cell Biol. 122, 923–932.

    Article  PubMed  CAS  Google Scholar 

  33. Panetti, T. S., Chen, H., Misenheimer, T. M., Getzler, S. B., and Mosher, D. F. (1997) Endothelial cell mitogenesis induced by LPA: inhibition by thrombospondin-1 and thrombospondin-2. J. Lab. Clin. Med. 129, 208–216.

    Article  PubMed  CAS  Google Scholar 

  34. Tolsma, S. S., Stack, M. S., and Bouck, N. (1997) Lumen formation and other angiogenic activities of cultured capillary endothelial cells are inhibited by thrombospondin-1. Microvasc. Res. 54, 13–26.

    Article  PubMed  CAS  Google Scholar 

  35. Scheibani, N. and Frazier, W. A. (1995) Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenicity. Proc. Natl. Acad. Sci. USA 92, 6788–6792.

    Article  Google Scholar 

  36. Mansfield, P. J., Boxer, L. A., and Suchard, S. J. (1990) Thrombospondin stimulates motility of human neutrophils. J. Cell Biol. 111, 3077–3086.

    Article  PubMed  CAS  Google Scholar 

  37. Taraboletti, G., Morigi, M., Figliuzzi, M., Giavazzi, R., Zoja, C., and Remuzzi, G. (1992) Thrombo-spondin induces glomerular mesangial cell adhesion and migration. Lab. Invest. 67, 566–571.

    Google Scholar 

  38. Dawson, D. W., Pearce, S. F. A., Zhong, R., Silverstein, R. L., Frazier, W. A., and Bouck, N. P. (1997) CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717.

    Article  PubMed  CAS  Google Scholar 

  39. Volpert, O. V., Tolsma, S. S., Pellerin, S., Feige, J.-J., Chen, H., Mosher, D. F., and Bouck, N. (1995) Inhibition of angiogenesis by thrombospondin-2. Biochem. Biophys. Res. Comm. 217, 326–332.

    Article  PubMed  CAS  Google Scholar 

  40. Taraboletti, G., Roberts, D., Liotta, L. A., and Giavazzi, R. (1990) Platelet thrombospondin modulates endothelial cell adhesion, motility and growth: a potential angiogenesis regulatory factor. J. Cell Biol. 111, 765–772.

    Article  PubMed  CAS  Google Scholar 

  41. Taraboletti, G., Belotti, D., and Giavazzi, R. (1992) Thrombospondin modulates basic fibroblast growth factor activities on endothelial cells, in Angiogenesis, Key Principles (Steiner, R., Weiss, P. B., and Langer, R., eds.), Birkhauser Verlag, Basel, pp. 210–213.

    Chapter  Google Scholar 

  42. Gao, A.-G., Lindberg, F. P., Finn, M. B., Blystone, S. D., Brown, E. J., and Frazier, W. A. (1996) Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 271, 21–24.

    Article  CAS  Google Scholar 

  43. Nicosia, R. F. and Tuszynski, G. P. (1994) Matrix-bound thrombospondin promotes angiogenesis in vitro. J. Cell Biol. 124, 183–193.

    Article  PubMed  CAS  Google Scholar 

  44. Sato, N., Sawasaki, Y., Senoo, A., Fuse, Y., Hirano, Y., and Goto, T. (1987) Development of capillary networks from rat microvascular fragments in vitro: the role of myofibroblastic cells. Microvasc. Res. 33, 194–210.

    Article  PubMed  CAS  Google Scholar 

  45. Vogel, T., Guo, N. H., Krutsch, H. C., Blake, D. A., Hartman, J., Mendelovitz, S., Panet, A., and Roberts, D. D. (1993) Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J. Cell. Biochem. 53, 74–84.

    Article  PubMed  CAS  Google Scholar 

  46. Asch, A. S., Silbiger, S., Heimer, E., and Nachman, R. L. (1992) Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem. Biophys. Res. Comm. 182, 1208–1217.

    Article  PubMed  CAS  Google Scholar 

  47. Leung, L. L. K., Li, W.-X., McGregor, J. L., Albrecht, G., and Howard, R. J. (1992) CD36 peptides enhance or inhibit CD36-thrombospondin binding. J. Biol. Chem. 267, 18,244–18,250.

    Google Scholar 

  48. Li, W.-X., Howard, R. J., and Leung, L. L. K. (1993) Identification of SVTCG in thrombospondin as the conformation-dependent, high affinity binding site for its receptor, CD36. J. Biol. Chem. 268, 16,179–16,184.

    Google Scholar 

  49. Dawson, D. W., Volpert, O. V., Pearce, S. F. A., Schneider, A. J. Silverstein, R. L., Henkin, J., and Bouck, N. P. (1998) Three distinct D-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Submitted for publication.

    Google Scholar 

  50. Guo, N.-H., Krutzsch, H. C., Inman, J. K., Shannon, C. S., and Roberts, D. D. (1997) Antiproliferative and antitumor activities of D-reverse peptides derived from the second type-1 repeat of thrombospondin1. J. Pept. Res. 50, 210–221.

    Article  PubMed  CAS  Google Scholar 

  51. Schultz-Cherry, S., Chen, H., Mosher, D. F., Misenheimer, T. M., Krutzsch, H. C., Roberts, D. D., and Murphy-Ullrich, J. E. (1994) Regulation of transforming growth factor-β activation by discrete sequences of thrombospondin 1. J. Biol. Chem. 270, 7304–7310.

    Google Scholar 

  52. Tolsma, S. S., Dawson, D. W., Gao, A.-G., Finn, M. B., Poverini, P. J., Bouck, N. P., and Frazier, W. A. (1998) Integrin associated protein (CD47) is a thrombospondin-1 receptor stimulating endothelial cell motility. Submitted for publication.

    Google Scholar 

  53. Daviet, L. and McGregor, J. L. (1997) Vascular biology of CD36: roles of this new adhesion molecule family in different disease states. Thromb. Haemost. 78, 65–69.

    Google Scholar 

  54. Greenwalt, D. E., Lipsky, R. H., Ockenhouse, C. F., Ikeda, H., Tandon, N. N., and Jamieson, G. A. (1992) Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 80, 1105–1115.

    Google Scholar 

  55. Jimnéz, B., Volpert, O. V., Febbraio, M., Silverstein, R. L., and Bouck, N. (1998) Thrombospondin-1 inhibits angiogenesis in vivo by signaling via CD36, p59fyn and p38 MAPK to induce apoptosis. Submitted for publication.

    Google Scholar 

  56. Daviet, L., Malvoisin, E., Wild, T. F., and McGregor, J. L. (1997) Thrombospondin induces dimerization of membrane-bound, but not soluble CD36. Thromb. Haemost. 78, 897–901.

    Google Scholar 

  57. Taraboletti, G., Belotti, D., Borsotti, P., Vergani, V., Rusnati, M., Presta, M., and Giavazzi, R. (1997) The 140-kilodalton antiangiogenic fragment of thrombospondin-1 binds to basic fibroblast growth factor. Cell Growth Difff. 8, 471–479.

    Google Scholar 

  58. Yayon, A., Klabsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991) Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848.

    Google Scholar 

  59. Bull, H. A., Brickell, P. M., and Dowd, P. M. (1994) src-related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal microvascular endothelial cells. FEBSLett. 351, 41–44.

    Google Scholar 

  60. Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., et al. (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544.

    Article  PubMed  CAS  Google Scholar 

  61. Cary, L. A., Chang, J. F., and Guan, J.-L. (1996) Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell Sci. 109, 1787–1794.

    CAS  Google Scholar 

  62. Romer, L. H., McLean, N., Turner, C. E., and Burridge, K. (1994) Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Mol. Biol. Cell. 5, 349–361.

    PubMed  CAS  Google Scholar 

  63. Soldi, R., Sanavio, F., Aglietta, M., Primo, L., Defilippi, P., Marchisio, P. C., and Bussolino, F. (1996) Platelet-activating factor (PAF) induces early tyrosine phosphorylation of focal adhesion kinase (p125FAK) in human endothelial cells. Oncogene 13, 515–525.

    PubMed  CAS  Google Scholar 

  64. Abedi, H. and Zachary, I. (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272, 15,442–15,451.

    Google Scholar 

  65. Gilmore, A. P. and Romer, L. H. (1996) Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell. 7, 1209–1224.

    PubMed  CAS  Google Scholar 

  66. Williams, G. M., Kemp, S. J. G., and Brindle, N. P. J. (1996) Involvement of protein tyrosine kinases in regulation of endothelial cell organization by basement membrane proteins. Biochem. Biophys. Res. Comm. 229, 375–380.

    Article  PubMed  CAS  Google Scholar 

  67. Guo, N., Krutzsch, H. C., Inman, J. K., and Roberts, D. D. (1997) Thrombospondin-1 and type 1 repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res. 57, 1735–1742.

    PubMed  CAS  Google Scholar 

  68. Knowles, D. M., Tolidjian, C., Marboe, C., D’Agati, V., Grimes, M., and Chess, L. (1984) Monoclonal anti-human monocyte antibodies OKM1 and OKM5 possess distinctive tissue distributions including differential reactivity with vascular endothelium. J. Immunol. 132, 2170–2173.

    PubMed  Google Scholar 

  69. Swerlick, R. A., Lee, K. H., Wick, T. M., and Lawley, T. J. (1992) Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J. Immunol. 148, 78–83.

    CAS  Google Scholar 

  70. Peltzbauer, P., Bender, J. R., Wilson, J., and Pober, J. S. (1993) Heterogeneity of dermal microvascular endothelial cell antigen expression and cytokine responsiveness in situ and in cell culture. J. Immunol. 151, 5062–5072.

    Google Scholar 

  71. Nagura, H., Koshikawa, T., Fukuda, Y., and Asai, J. (1986) Hepatic vascular endothelial cells heterogenously express surface antigens associated with monocytes, macrophages and T lymphocytes. Virchows Arch. 409, 407–416.

    Article  CAS  Google Scholar 

  72. Aikawa, M., Iseka, M., Barnwell, J. W., Taylor, D., Oo, M. M., and Howard, R. J. (1990) Pathology of human cerebral malaria. Am. J. Trop. Med. Hyg. 43, 30–37.

    PubMed  CAS  Google Scholar 

  73. Johnson, J. K., Swerlick, R. A., Grady, K. K., Millet, P., and Wick, T. M. (1993) Cytoadherence of plasmodium falciparum-infected erythrocytes to microvascular endothelium is regulatable by cytokines and phorbol ester. J. Infect. Dis. 167, 698–703.

    Article  PubMed  CAS  Google Scholar 

  74. Asch, A. S., Liu, I., Briccetti, F. M., Barnwell, J. W., Kwakye-Berko, F., Dokun, A., Goldberger, J., and Pernambuco, M. (1993) Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science 262, 1436–1440.

    Article  PubMed  CAS  Google Scholar 

  75. Hatmi, M., Garavet, J. M., Elalamy, I., Vargaftig, B. B., and Jacquemin, C. (1996) Evidence for cAMP-dependent platelet ectoprotein kinase activity that phosphorylates platelet glycoprotein IV (CD36). J. Biol. Chem. 271, 24,776–24,780.

    Google Scholar 

  76. Murphy-Ullrich, J. E., Gurusiddappa, S., Frazier, W. A., and Hook, M. (1993) Heparin-binding peptides from thrombospondins 1 and 2 contain focal adhesion-labilizing activity. J. Biol. Chem. 268, 26,784–26,789.

    Google Scholar 

  77. Hogg, P. J. (1994) Thrombospondin 1 as an enzyme inhibitor. Thromb. Haemost. 72, 787–792.

    PubMed  CAS  Google Scholar 

  78. Keppler, D., Sameni, M., Moin, K., Mikkelsen, T., Diglio, C. A., and Sloane, B. F. (1996) Tumor progression and angiogenesis: cathepsin B & Co. Biochem. Cell Biol. 74, 799–810.

    Article  PubMed  CAS  Google Scholar 

  79. Bikfalvi, A., Klein, S., Pintucci, G., and Rifkin, D. B. (1997) The role of proteases in angiogenesis, in Tumour Angiogenesis (Bicknell, R., Lewis, C. E., and Ferrara, N., eds.), Oxford University Press, Oxford, pp. 115–124.

    Google Scholar 

  80. Pepper, M. S., Belin, D., Montesano, R., Orci, L., and Vassalli, J.-D. (1990) Transforming growth factor beta-1 positively modulates the angiogenic properties of endothelial cells. J. Cell Biol. 111, 743–755.

    Article  PubMed  CAS  Google Scholar 

  81. Roberts, A. B. and Sporn, M. B. (1989) Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF-B. Am. Rev. Respir. Dis. 140, 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  82. Muller, G., Behrens, J., Nussbaumer, U., Bohlen, P., and Birchmeier, W. (1987) Inhibitory action of transforming growth factor beta on endothelial cells. Proc. Natl. Acad. Sci. USA 84, 5600–5604.

    Article  PubMed  CAS  Google Scholar 

  83. Crawford, S. E., Stellmach, V., Murphy-Ullrich, J. E., Ribeiro, S. F., Lawler, J., Hynes, R. O., Boivin, G. P., and Bouck, N. (1998) Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170.

    Article  PubMed  CAS  Google Scholar 

  84. Yang, E. Y. and Moses, H. L. (1990) Transforming growth factor betal-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 111, 731–741.

    Google Scholar 

  85. Huber, A. R., Ellis, S., Johnson, K. J., Dixit, V. M., and Varani, J. (1992) Monocyte diapedesis through an in vitro vessel wall construct: inhibition with monoclonal antibodies to thrombospondin. J. Leukoc. Biol. 52, 524–528.

    PubMed  CAS  Google Scholar 

  86. Weinstat-Saslow, D. L., Zabrentzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., and Steeg, P. S. (1994) Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res. 54, 6504–6511.

    PubMed  CAS  Google Scholar 

  87. Bluel, K., Popp, S., Fusenig, N. E., Stanbridge, E. J., and Boukamp, P. (1997) Suppression of tumor growth by chromosome 15 in human skin carcinoma cells is correlated with anti-angiogenic properties of thrombospondin-1. Proc. Am. Assoc. Cancer Res. 38, 264.

    Google Scholar 

  88. Boukamp, P., Bleuel, K., Popp, S., Vormwald-Dogan, V., and Fusenig, N. E. (1997) Functional evidence for tumor-suppressor activity on chromosome 15 in human skin carcinoma cells and thrombospondin-1 as the potential suppressor. J. Cell. Physiol. 173, 256–260.

    Article  PubMed  CAS  Google Scholar 

  89. Castle, V. P., Dixit, V. M., and Polverini, P. J. (1997) Thrombospondin-1 suppresses tumorigenesis and angiogenesis in serum- and anchorage independent NIH 3T3 cells. Lab. Invest. 77, 51–61.

    Google Scholar 

  90. Prehn, R. T. (1993) Two competing influences that may explain concomitant tumor resistance. Cancer Res. 53, 3266–3269.

    PubMed  CAS  Google Scholar 

  91. Holmgren, L., O’Reilly, M. S., and Folkman, J. (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153.

    Article  PubMed  CAS  Google Scholar 

  92. Rasheed, S., Nelson-Rees, W. A., Toth, E. M., Arnstein, P., and Gardner, M. B. (1974) Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033.

    Article  PubMed  CAS  Google Scholar 

  93. Dawes, J., Clemetson, K. J., Gogstad, G. O., McGregor, J., Clezardin, P., Prowse, C. V., and Pepper, D. S. (1983) A radioimmunoassay for thrombospondin, used in a comparative study ofthrombospondin, beta-thromboglobulin and platelet factor 4 in healthy volunteers. Thromb. Res. 29, 569–581.

    Article  PubMed  CAS  Google Scholar 

  94. Tuszynski, G. P., Smith, M., Rothman, V. L., Capuzzi, D. M., Joseph, R. R., Katz, J., et al. (1992) Thrombospondin levels in patients with malignancy. Thromb. Haemost. 67, 607–611.

    Google Scholar 

  95. Nathan, F. E., Hernandez, E., Dunton, C. J., Treat, J., Switalska, H. I., Joseph, R. R., and Tuszynski, G. P. (1994) Plasma thrombospondin levels in patients with gynecologic malignancies. Cancer 73, 2853–2858.

    Article  PubMed  CAS  Google Scholar 

  96. Katagiri, Y., Hayashi, Y., Baba, I., Suzuki, H., Tanoue, K., and Yamazaki, H. (1991) Characterization of platelet aggregation induced by the human melanoma cell line HMV-1: roles of heparin, plasma adhesive proteins, and tumor cell membrane proteins. Cancer Res. 51, 1286–1293.

    PubMed  CAS  Google Scholar 

  97. Tuszynski, G. P., Gasic, T. B., Rothman, V. L., Knudsen, K. A., and Gasic, G. J. (1987) Thrombospondin, a potentiator of tumor cell metastasis. Cancer Res. 47, 4130–4133.

    PubMed  CAS  Google Scholar 

  98. Tuszynski, G. P., Rothman, V. L., Deutsch, A. H., Hamilton, B. K., and Eyal, J. (1992) Biological activities of peptides and peptide analogues derived from common sequences present in thrombospondin, properdin, and malarial proteins. J. Cell Biol. 116, 209–217.

    Article  CAS  Google Scholar 

  99. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86, 353–364.

    Article  PubMed  CAS  Google Scholar 

  100. Volpert, O. V., Dameron, K. M., and Bouck, N. (1997) Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 14 1495–1502.

    Google Scholar 

  101. Volpert, O. V., Stellmach, V., and Bouck, N. (1995) Modulation of thrombospondin and other naturally occuring inhibitors of angiogenesis during tumor progression. Breast Cancer Res. Treat. 36 119–126.

    Google Scholar 

  102. Zabrenetzky, V., Harris, C. C., Steeg, P. S., and Roberts, D. D. (1994) Expression of extracellular matrix molecule inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int. J. Cancer 59, 191–195.

    Article  PubMed  CAS  Google Scholar 

  103. Scheibani, N. and Frazier, W. A. (1996) Repression ofthrombospondin-1 expression, a natural inhibitor of angiogenesis, in polyoma middle T transformed NIH3T3 cells. Cancer Lett. 107, 45–52.

    Article  Google Scholar 

  104. Slack, J. L. and Bornstein, P. (1994) Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Diffffer. 5, 1373–1380.

    CAS  Google Scholar 

  105. Tikhonenko, A. T., Black, D. J., and Linial, M. L. (1996) Viral myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J. Biol. Chem. 271, 30,741–30,747.

    Google Scholar 

  106. Mettouchi, A., Cabon, F., Montreau, N., Vernier, P., Mercier, G., Blangy, D., et al. (1994) SPARC and thrombospondin genes are repressed by the c-jun oncogene in rat embryo fibroblasts. EMBO J. 13, 5668–5678.

    CAS  Google Scholar 

  107. Van Meir, E. G., Polverini, P. J., Chazin, V. R., Su Huang, H. J., de Tribolet, N., and Cavenee, W. K. (1994) Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat. Genet. 8, 171–176.

    Article  PubMed  Google Scholar 

  108. Li, D.-M. and Sun, H. (1997) TEP 1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 57, 2124–2129.

    PubMed  CAS  Google Scholar 

  109. Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung, W. K. A., Lin, H., Ligon, A. H., et al. (1997) Identification of a candidate tumour suppressor gene, MMAC 1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362.

    Article  PubMed  CAS  Google Scholar 

  110. Wick, W., Petersen, I., Schmutzler, R. K., Wolfarth, B., Lenartz, D., Bierhoff, E., et al. (1996) Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene 12, 973–978.

    PubMed  CAS  Google Scholar 

  111. Iruela-Arispe, M. L., Bornstein, P., and Sage, H. (1991) Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc. Natl. Acad. Sci. USA 88, 5026–5030.

    Google Scholar 

  112. DiPietro, L. A., Nebgen, D. R., and Polverini, P. J. (1994) Downregulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis. J. Vasc. Res. 31, 178–185.

    Article  PubMed  CAS  Google Scholar 

  113. Canfield, A. E. and Schor, A. M. (1995) Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J. Cell Sci. 108, 797–809.

    PubMed  CAS  Google Scholar 

  114. Bagavandoss, P. and Wilkes, J. W. (1990) Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem. Biophys. Res. Comm. 170, 867–872.

    Article  PubMed  CAS  Google Scholar 

  115. Raychaudhury, A., Frazier, W. A., and D’Amore, P. A. (1994) Comparison of normal and tumorigenic endothelial cells: differences in thrombospondin production and responses to transforming growth factor-beta. J. Cell Sci. 107, 39–46.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawson, D.W., Bouck, N.P. (1999). Thrombospondin as an Inhibitor of Angiogenesis. In: Teicher, B.A. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-453-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-453-5_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-4518-4

  • Online ISBN: 978-1-59259-453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics