Skip to main content

Pheochromocytoma

Progress in Diagnosis, Therapy, and Genetics

  • Chapter
Adrenal Disorders

Abstract

Pheochromocytomas are catecholamine-secreting tumors typically arising in about 90% of cases from adrenomedullary tissue and in about 10% of cases from extraadrenal chromaffin tissue. Those arising from extraadrenal tissue are commonly known as paragangliomas or chemodectomas, but all pheochromocytomas display similar histo­pathological characteristics. Paragangliomas arise mainly from chromaffin tissue adja­cent to sympathetic ganglia of the neck, mediastinum, abdomen, and pelvis. Others may arise from a collection of chromaffin tissue around the origin of the inferior mesenteric artery, the organs of Zuckerkandl. Most represent sporadic tumors and only about 10% of pheochromocytomas are familial. In contrast to sporadic pheochromocyto­mas that are usually unicentric and unilateral, familial pheochromocytomas are often multicentric and bilateral (1). Pheochromocytomas are rare endocrine tumors, which, according to different reviews and statistics account for approx 0.05% to 0.1% of patients with any degree of sustained hypertension (2). However, this probably accounts for only 50% of persons harboring a pheochromocytoma, when it is considered that about half the patients with pheochromocytomas have only paroxysmal hypertension or are normotensive. Also, despite the low incidence of pheochromocytoma in patients with sustained hypertension, it must also be considered that the prevalence of sustained hypertension in the adult population of Western countries is between 15 and 20% (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webb TA, Sheps SG, Carney JA. Differences between sporadic pheochromocytoma and pheochromocytoma in multiple endocrine neoplasia, type 2. Am J Surg Pathol 1980; 4: 121–126.

    PubMed  CAS  Google Scholar 

  2. Manger WM, Gifford RW. Clinical and Experimental Pheochromocytoma. Blackwell Science, Cambridge, MA, 1996.

    Google Scholar 

  3. Epstein FH, Eckhoff RD. The epidemiology of high blood pressure-geographic distributions and etiologic factors. In: Stamler J, Stamler R, Pullman TN eds. The epidemiology of hypertension. Grune and Stratton, New York, 1967, pp. 155–166.

    Google Scholar 

  4. Page LB. Epidemiologic evidence on the etiology of human hypertension and its possible prevention. Am Heart J 1976; 91: 527–534.

    PubMed  CAS  Google Scholar 

  5. Goldfien A. Basic Endocrinology. Appleton and Lange, Norwalk, CT, 1998, pp. 370.

    Google Scholar 

  6. Ram CV, Fierro-Carrion GA. Pheochromocytoma. Semin Nephrol 1995; 15: 126–137.

    PubMed  CAS  Google Scholar 

  7. Casanova S, Rosenberg-Bourgin M, Farkas D, et al. Pheochromocytoma in multiple endocrine neoplasia type 2 A: survey of 100 cases. Clin Endocrinol 1993; 38: 531–537.

    CAS  Google Scholar 

  8. Neumann HP, Berger DP, Sigmund G, et al. Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease. N Engl J Med 1993; 329: 1531–1538.

    PubMed  CAS  Google Scholar 

  9. Bravo EL, Gifford RW. Pheochromocytoma. Endocrinol Metab North Am 1993; 22: 329–341.

    CAS  Google Scholar 

  10. Stein PP, Black HR. A simplified diagnostic approach to pheochromocytoma. A review of the literature and report of one institution’s experience. Medicine 1991; 70: 46–66.

    PubMed  CAS  Google Scholar 

  11. Gifford RW, Kvale WF, Maher FT, Roth GM, Priestley JT. Clinical features, diagnosis, and treatment of pheochromocytoma. A review of 76 cases. Mayo Clin Proc 1964; 39: 281–302.

    PubMed  Google Scholar 

  12. Kvale WF, Roth GM, Manger WM, Priestley JT. Pheochromocytoma. Circulation 1956; 14: 622–630.

    PubMed  CAS  Google Scholar 

  13. Bouloux PG, Fakeeh M. Investigation of pheochromocytoma. Clin Endocrinol (Oxf) 1995; 43: 657664.

    Google Scholar 

  14. Moon HD, Koneff AA, Li CC, Simpson ME. Pheochromocytomas of adrenals in male rats chronically injected with pituitary growth hormone. Proc Soc Exp Biol Med 1956; 93: 74–77.

    PubMed  CAS  Google Scholar 

  15. Lupulescou A. Less pheochromocytomes experimentaux. Ann Endocrinol 1961; 22: 459–468.

    CAS  Google Scholar 

  16. Scott HW Jr, Oates JA, Nies AS, Burko H, Page DL, Rhamy RK. Pheochromocytoma: present diagnosis and management. Ann Surg 1976; 183: 587–593.

    PubMed  Google Scholar 

  17. Goldfarb DA, Novick AC, Bravo EL, Straffon RA, Montie JE, Kay R. Experience with extra-adrenal pheochromocytoma. J Urol 1989; 142: 931–936.

    PubMed  CAS  Google Scholar 

  18. van Heerden JA, Roland CF, Carney JA, Sheps SG, Grant CS. Long-term evaluation following resection of apparently benign pheochromocytoma(s)/paraganglioma(s). World J Surg 1990; 14: 325329.

    Google Scholar 

  19. O’Riordain DS, Young WF Jr, Grant CS, Carney JA, van Heerden JA. Clinical spectrum and outcome of functional extraadrenal paraganglioma. World J Surg 1996; 20:916–21; discussion.

    Google Scholar 

  20. Daneman A. Adrenal neoplasms in children. Semin Roentgenol 1988; 23: 205–215.

    PubMed  CAS  Google Scholar 

  21. Clarke MR, Weyant RI, Watson CG, Carty SE. Prognostic markers in pheochromocytoma. Hum Pathol 1998; 29: 522–526.

    PubMed  CAS  Google Scholar 

  22. Linnoila RI, Lack EE, Steinberg SM, Keiser HR. Decreased expression of neuropeptides in malignant pheochromocytomas: an immunohistochemical study. Hum Pathol 1988; 19: 41–50.

    PubMed  CAS  Google Scholar 

  23. Kubota Y, Nakada T, Sasagawa I, Yanai H, Itoh K. Elevated levels of telomerase activity in malignant pheochromocytoma. Cancer 1998; 82: 176–179.

    PubMed  CAS  Google Scholar 

  24. Kinoshita H, Ogawa O, Mishina M, et al. Telomerase activity in adrenal cortical tumors and pheochromocytomas with reference to clinicopathologic features. Urol Res 1998; 26: 29–32.

    PubMed  CAS  Google Scholar 

  25. Lewis PD. A cytophotometric study of benign and malignant pheochromocytomas. Virchows Arch B Cell Pathol 1971; 9: 371–376.

    PubMed  CAS  Google Scholar 

  26. Hosaka Y, Rainwater LM, Grant CS, Farrow GM, van Heerden JA, Lieber MM. Pheochromocytoma: nuclear deoxyribonucleic acid patterns studied by flow cytometry. Surgery 1986; 100: 1003–1010.

    PubMed  CAS  Google Scholar 

  27. Liu J, Voutilainen R, Kahri AI, Heikkila P. Expression patterns of the c-myc gene in adrenocortical tumors and pheochromocytomas. J Endocrinol 1997; 152: 175–181.

    PubMed  CAS  Google Scholar 

  28. Milunsky J, DeStefano AL, Huang XL, Baldwin CT, Michels VV, Jako G, Milunsky A Familial paragangliomas: linkage to chromosome 11g23 and clinical implications. Am J Med Genet 1997; 72: 66–72.

    PubMed  CAS  Google Scholar 

  29. Walther MM, Reiter R, Keiser HR, et al. Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J Urol 1999; 162: 659–664.

    PubMed  CAS  Google Scholar 

  30. Tisherman SE, Tisherman BG, Tisherman SA, Dunmore S, Levey GS, Mulvihill JJ. Three-decade investigation of familial pheochromocytoma. An allele of von Hippel-Lindau disease? Arch Intern Med 1993; 153: 2250–2556.

    Google Scholar 

  31. Carney JA, Sizemore GW, Sheps SG. Adrenal medullary disease in multiple endocrine neoplasia type 2: pheochromocytoma and its precursors. Am J Clin Pathol 1976; 66: 279–290.

    PubMed  CAS  Google Scholar 

  32. Wilson RA, Ibanez ML. A comparative study of 14 cases of familial and nonfamilial pheochromocytomas. Hum Pathol 1978; 9: 181–188.

    PubMed  CAS  Google Scholar 

  33. Eng C, Crossey PA, Mulligan LM, et al. Mutations in the RET protooncogene and the von HippelLindau disease tumour suppressor gene in sporadic and syndromic pheochromocytomas. J Med Genet 1995; 32: 934–937.

    PubMed  CAS  Google Scholar 

  34. Richard S, Beigelman C, Duclos JM, et al. Pheochromocytoma as the first manifestation of von Hippel-Lindau disease. Surgery 1994; 116: 1076–1981.

    PubMed  CAS  Google Scholar 

  35. Gagel RF, Tashjian AH Jr, Cummings T, et al. The clinical outcome of prospective screening for multiple endocrine neoplasia type 2a. An 18-year experience. N Engl J Med 1988; 318: 478–484.

    PubMed  CAS  Google Scholar 

  36. Calmettes C, Ponder BA, Fischer JA, Raue F. Early diagnosis of the multiple endocrine neoplasia type 2 syndrome: consensus statement. European Community Concerted Action: Medullary Thyroid Carcinoma. Eur J Clin Invest 1992; 22: 755–760.

    PubMed  CAS  Google Scholar 

  37. Pomares FJ, Canas R, Rodriguez JM, Hernandez AM, Parrilla P, Tebar FJ. Differences between sporadic and multiple endocrine neoplasia type 2A pheochromocytoma. Clin Endocrinol 1998; 48: 195–200.

    CAS  Google Scholar 

  38. Lenders JW, Keiser HR, Goldstein DS, et al. Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Intern Med 1995; 123: 101–109.

    PubMed  CAS  Google Scholar 

  39. Howe JR, Norton JA, Wells SA. Prevalence of pheochromocytoma and hyperparathyroidism in multiple endocrine neoplasia type 2A: results of long-term follow-up. Surgery 1993; 114:1070–1077. 34a. Eng C. RET proto-oncogene in the development of human cancer. J Clin Oncol 1999; 17: 380–393.

    Google Scholar 

  40. Wilson RA, Ibanez ML. A comparative study of 14 cases of familial and nonfamilial pheochromocytomas. Hum Pathol 1978; 9: 181–188.

    PubMed  CAS  Google Scholar 

  41. Vistelle R, Grulet H, Gibold C, et al. High permanent plasma adrenaline levels: a marker of adrenal medullary disease in medullary thyroid carcinoma. Clin Endocrinol 1991; 34: 133–138.

    CAS  Google Scholar 

  42. Hamilton BP, Landsberg L, Levine RI. Measurement of urinary epinephrine in screening for pheochromocytoma in multiple endocrine neoplasia type II. Am J Med 1978; 65: 1027–1032.

    PubMed  CAS  Google Scholar 

  43. Sato T, Kobayashi K, Miura Y, Sakuma H, Yoshinaga K. High epinephrine content in the adrenal tumors from Sipple’s syndrome. Tohoku J Exp Med 1975; 115: 15–19.

    PubMed  CAS  Google Scholar 

  44. Mathew CG, Chin KS, Easton DF, et al. A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature 1987; 328: 527–528.

    PubMed  CAS  Google Scholar 

  45. Mulligan LM, Kwok JB, Healey CS, et al. Germ-line mutations of the RET protooncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363: 458–460.

    PubMed  CAS  Google Scholar 

  46. Gardner E, Mulligan LM, Eng C. Haplotype analysis of MEN2 mutations. Hum Mol Genet 1994; 3: 1771–1774.

    PubMed  CAS  Google Scholar 

  47. Santoro M, Carlomagno F, Romano A, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN 2 and MEN 2B. Science 1995; 267: 381–383.

    PubMed  CAS  Google Scholar 

  48. Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 1995; 15: 1613–1619.

    PubMed  CAS  Google Scholar 

  49. Donis-Keller H, Dou S, Chi D. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993; 2: 851–856.

    PubMed  CAS  Google Scholar 

  50. Mulligan LM, Eng C, Healey CS. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet 1994; 6: 70–74.

    PubMed  CAS  Google Scholar 

  51. Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996; 276: 1575–1579.

    Google Scholar 

  52. Mulligan LM, Marsh DJ, Robinson BG, et al. Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the International RET Mutation Consortium. J Intern Med 1995; 238: 343346.

    Google Scholar 

  53. Schuffenecker I, Billaud M, Calendar A. RET proto-oncogene mutations in French MEN 2A and FMTC families. Hum Mol Genet 1994; 3: 1939–1943.

    PubMed  CAS  Google Scholar 

  54. Eng C, Smith DP, Mulligan LM. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumors. Hum Mol Genet 1994; 3: 237–241.

    PubMed  CAS  Google Scholar 

  55. Carlson KM, Dou S, Chi D. Single missense mutation in the tyrosine kinase catalytic domain of the RET proto-oncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci 1994; 91: 1579–1583.

    PubMed  CAS  Google Scholar 

  56. Gordon Cm, Majzoub JA, Marsh DJ, et al. Four cases of mucosal neuroma syndrome: multiple endocrine neoplasm 2B or not 2B? J Clin Endocrinol Metab 1998; 83: 17–20.

    Google Scholar 

  57. Jing S, Wen D, Yu Y, et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996; 85: 1113–1124.

    PubMed  CAS  Google Scholar 

  58. Trupp M, Arenas E, Fainzilber M, et al. Functional receptor for GDNF encoded by the c-ret protooncogene. Nature 1996; 381: 785–788.

    PubMed  CAS  Google Scholar 

  59. Romeo G, Ronchetto P, Luo Y. Point mutations affecting the tyrosine kinase domain of the ret proto-oncogene in Hirschsprung’s disease. Nature 1994; 367: 377–378.

    PubMed  CAS  Google Scholar 

  60. Lamiell JM, Salazar FG, Hsia YE. von Hippel-Lindau disease affecting 43 members of a single kindred. Medicine 1989; 68: 1–29.

    PubMed  CAS  Google Scholar 

  61. Karsdorp N, Elderson A, Wittebol-Post D, et al. Von Hippel-Lindau disease: new strategies in early detection and treatment. Am J Med 1994; 97: 158–168.

    PubMed  CAS  Google Scholar 

  62. Choyke PL, Glenn GM, Walther MM, Patronas NJ, Linehan WM, Zbar B. von Hippel-Lindau disease: genetic, clinical, and imaging features. Radiology 1995; 194: 629–642.

    PubMed  CAS  Google Scholar 

  63. Linehan WM, Lerman MI, Zbar B. Identification of the von Hippel-Lindau (VHL) gene. Its role in renal cancer. JAMA 1995; 273: 564–570.

    Google Scholar 

  64. Maher ER, Yates JR, Harries R, et al. Clinical features and natural history of von Hippel-Lindau disease. Q J Med 1990; 77: 1151–1163.

    PubMed  CAS  Google Scholar 

  65. Richard S, Chaveau D, Chretien Y. Renal lesions and pheochromocytoma in von Hippel-Lindau disease. Adv Nephrol 1994; 23: 1–27.

    CAS  Google Scholar 

  66. Brauch H, Kishida T, Glavac D, et al. Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum Genet 1995; 95: 551–556.

    PubMed  CAS  Google Scholar 

  67. Latif F, Tory K, Gnarra J. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993; 260: 1317–1320.

    PubMed  CAS  Google Scholar 

  68. Richards FM, Phipps ME, Latif F. Mapping the von Hippel-Lindau disease tumor suppressor gene: identification of germline deletions by pulsed field gel electrophoresis. Hum Mol Genet 1993; 2: 879–882.

    PubMed  CAS  Google Scholar 

  69. Yao M, Latif F, Orcutt ML. Von Hippel-Lindau disease: identification of deletion mutations by pulsed field gel electrophoresis. Hum Genet 1993; 92: 605–614.

    PubMed  CAS  Google Scholar 

  70. Richards FM, Crossey PA, Phipps ME. Detailed mapping of germline deletions of the von HippelLindau disease tumor suppressor gene. Hum Mol Genet 1994; 3: 595–598.

    PubMed  CAS  Google Scholar 

  71. Crossey PA, Richards FM, Foster K. Identification of intragenic mutations in the von HippelLindau disease tumor suppressor gene and correlation with disease phenotype. Hum Mol Genet 1994; 3: 1303–1308.

    PubMed  CAS  Google Scholar 

  72. van der Harst E, de Krijger RR, Dinjens WN, et al. Germline mutations in the vhl gene in patients presenting with pheochromocytomas. Int J Cancer 1998; 77: 337–340.

    PubMed  Google Scholar 

  73. Ritter MM, Frilling A, Crossey PA, et al. Isolated familial pheochromocytoma as a variant of von Hippel-Lindau disease. J Clin Endocrinol Metab 1996; 81: 1035–1037.

    PubMed  CAS  Google Scholar 

  74. Knudson AG Jr, Strong LC. Mutation and cancer: neuroblastoma and pheochromocytoma. Am J Hum Genet 1972; 24: 514–532.

    PubMed  Google Scholar 

  75. Whaley JM, Naglich J, Gelbert L. Germline mutations in the von Hippel-Lindau tumor suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. Am J Hum Genet 1994; 55: 1092–1102.

    PubMed  CAS  Google Scholar 

  76. Atuk NO, Stolle C, Owen JA, Carpenter JT, Vance ML. Pheochromocytoma in von Hippel-Lindau disease: clinical presentation and mutation analysis in a large, multigenerational kindred. J Clin Endocrinol Metab 1998; 83: 117–120.

    PubMed  CAS  Google Scholar 

  77. Gross DJ, Avishai N, Meiner V, Filon D, Zbar B, Abeliovich D. Familial pheochromocytoma associated with a novel mutation in the von Hippel-Lindau gene. J Clin Endocrinol Metab 1996; 81: 147–149.

    PubMed  CAS  Google Scholar 

  78. Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995; 269: 1402–1406.

    PubMed  CAS  Google Scholar 

  79. Neumann HP, Eng C, Mulligan LM, et al. Consequences of direct genetic testing for germline mutations in the clinical management of families with multiple endocrine neoplasia, type II. JAMA 1995; 274: 1149–1151.

    Google Scholar 

  80. Aso T, Lane WS, Conaway JW, Conaway RC. Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 1995; 269: 1439–1443.

    PubMed  CAS  Google Scholar 

  81. Maher ER, Kaelin WG. von Hippel-Lindau disease. Medicine 1997; 76: 381–391.

    PubMed  CAS  Google Scholar 

  82. Riccardi VM. Neurofibromatosis: past, present, and future. N Engl J Med 1991; 324: 1283–1285.

    PubMed  CAS  Google Scholar 

  83. Huson SM, Compston DA, Harper PS. A genetic study of von Recklinghausen neurofibromatosis in south east Wales. II. Guidelines for genetic counselling. J Med Genet 1989; 26: 712–721.

    PubMed  CAS  Google Scholar 

  84. Walther MM, Herring J, Enquist E, Keiser HR, Linehan WM. Von Recklinghausen’s disease and pheochromocytomas. J Urol 1999; 162: 1582–1586.

    PubMed  CAS  Google Scholar 

  85. Viskochil D, Buchberg AM, Xu G, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 1990; 62: 187–192.

    PubMed  CAS  Google Scholar 

  86. Wallace MR, Marchuk DA, Andersen LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990; 249: 181–186.

    PubMed  CAS  Google Scholar 

  87. Cawthon RM, Weiss R, Xu GF, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990; 62: 193–201.

    PubMed  CAS  Google Scholar 

  88. Xu W, Mulligan LM, Ponder MA, et al. Loss of NF1 alleles in pheochromocytomas from patients with type I neurofibromatosis. Genes Chromo Cancer 1992; 4: 337–342.

    CAS  Google Scholar 

  89. Jacks T, Shih TS, Schmitt EM. Tumor predisposition in mice heterozygous for a targeted mutation in nfl. Nat Genet 1994; 7: 353–361.

    PubMed  CAS  Google Scholar 

  90. Ballester R, Marchuk D, Boguski M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 1990; 63: 851–859.

    PubMed  CAS  Google Scholar 

  91. Li Y, Bollag G, Clark R, et al. Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 1992; 69: 275–281.

    PubMed  CAS  Google Scholar 

  92. Mulvihill JJ, Ferrell RE, Carty SE, Tisherman SE, Zbar B. Familial pheochromocytoma due to mutant von Hippel-Lindau disease gene. Arch Intern Med 1997; 157: 1390–1391.

    PubMed  CAS  Google Scholar 

  93. Crossey PA, Eng C, Ginalska-Malinowska M, et al. Molecular genetic diagnosis of von HippelLindau disease in familial pheochromocytoma. J Med Genet 1995; 32: 885–886.

    PubMed  CAS  Google Scholar 

  94. Vargas MP, Zhuang Z, Wang C, Vortmeyer A, Linehan WM, Merino MJ. Loss of heterozygosity on the short arm of chromosomes 1 and 3 in sporadic pheochromocytoma and extra-adrenal paraganglioma. Hum Pathol 1997; 28: 411–415.

    PubMed  CAS  Google Scholar 

  95. Vogelstein B, Kinzler KW (eds.). The genetic basis of human cancer. McGraw-Hill, New York, 1998.

    Google Scholar 

  96. Bar M, Friedman E, Jakobovitz O, et al. Sporadic pheochromocytomas are rarely associated with germline mutations in the von Hippel-Lindau and RET genes. Clin Endocrinol 1997; 47: 707–712.

    CAS  Google Scholar 

  97. Hofstra RM, Stelwagen T, Stulp RP, et al. Extensive mutation scanning of RET in sporadic medullary thyroid carcinoma and of RET and VHL in sporadic pheochromocytoma reveals involvement of these genes in only a minority of cases. J Clin Endocrinol Metab 1996; 81: 2881–2884.

    PubMed  CAS  Google Scholar 

  98. Komminoth P, Roth J, Muletta-Feurer S, Saremaslani P, Seelentag WK, Heitz PU. RET proto-oncogene point mutations in sporadic neuroendocrine tumors. J Clin Endocrinol Metab 1996; 81: 2041–2046.

    PubMed  CAS  Google Scholar 

  99. Chew SL, Lavender P, Jain A, et al. Absence of mutations in the MEN2A region of the ret proto-oncogene in non-MEN 2A pheochromocytomas. Clin Endocrinol 1995; 42: 17–21.

    CAS  Google Scholar 

  100. Lindor NM, Honchel R, Khosla S, Thibodeau SN. Mutations in the RET protooncogene in sporadic pheochromocytomas. J Clin Endocrinol Metab 1995; 80: 627–629.

    PubMed  CAS  Google Scholar 

  101. Beldjord C, Desclaux-Arramond F, Raffin-Sanson M, et al. The RET protooncogene in sporadic pheochromocytomas: frequent MEN 2-like mutations and new molecular defects. J Clin Endocrinol Metab 1995; 80: 2063–2068.

    PubMed  CAS  Google Scholar 

  102. Gutmann DH, Geist RT, Rose K, Wallin G, Moley JF. Loss of neurofibromatosis type I (NF1) gene expression in pheochromocytomas from patients without NFl. Genes Chromo Cancer 1995; 13: 104–109.

    CAS  Google Scholar 

  103. Khosla S, Patel VM, Hay ID, et al. Loss of heterozygosity suggests multiple genetic alterations in pheochromocytomas and medullary thyroid carcinomas. J Clin Invest 1991; 87: 1691–1699.

    PubMed  CAS  Google Scholar 

  104. Tsutsumi M, Yokota J, Kakizoe T, Koiso K, Sugimura T, Terada M. Loss of heterozygosity on chromosomes 1p and 11p in sporadic pheochromocytoma. J Natl Cancer Inst 1989; 81: 367–370.

    PubMed  CAS  Google Scholar 

  105. Moley JF, Brother MB, Fong CT, et al. Consistent association of 1p loss of heterozygosity with pheochromocytomas from patients with multiple endocrine neoplasia type 2 syndromes. Cancer Res 1992; 52: 770–774.

    PubMed  CAS  Google Scholar 

  106. Williamson EA, Johnson SJ, Foster S, Kendall-Taylor P, Harris PE. G protein gene mutations in patients with multiple endocrinopathies. J Clin Endocrinol Metab 1995; 80: 1702–1705.

    PubMed  CAS  Google Scholar 

  107. Isobe K, Nakai T, Yukimasa N, Nanmoku T, Takekoshi K, Nomura F. Expression of mRNA coding for four catecholamine-synthesizing enzymes in human adrenal pheochromocytomas. Eur J Endocrinol 1998; 138: 383–387.

    PubMed  CAS  Google Scholar 

  108. Turner N, Brown JW, Carballeira A, Fishman LM. Tyrosine hydroxylase gene expression in varying forms of human pheochromocytoma. Life Sci 1996; 59: 1659–1665.

    Google Scholar 

  109. Bravo EL, Tarazi RC, Gifford RW, Stewart BH. Circulating and urinary catecholamines in pheochromocytoma. Diagnostic and pathophysiologic implications. N Engl J Med 1979; 301: 682–686.

    CAS  Google Scholar 

  110. Duncan MW, Compton P, Lazarus L, Smythe GA. Measurement of norepinephrine and 3,4-dihydroxyphenylglycol in urine and plasma for the diagnosis of pheochromocytoma. N Engl J Med 1988; 319: 136–142.

    PubMed  CAS  Google Scholar 

  111. Chen F, Slife L, Kishida T, Mulvihill J, Tisherman SE, Zbar B. Genotype-phenotype correlation in von Hippel-Lindau disease: identification of a mutation associated with VHL type 2A. J Med Genet 1996; 33: 716–717.

    PubMed  CAS  Google Scholar 

  112. Manu P, Runge LA. Biochemical screening for pheochromocytoma. Superiority of urinary metanephrines measurements. Am J Epidemiol 1984; 120: 788–790.

    PubMed  CAS  Google Scholar 

  113. Heron E, Chatellier G, Billaud E, Foos E, Plouin PF. The urinary metanephrine-to-creatinine ratio for the diagnosis of pheochromocytoma. Ann Intern Med 1996; 125: 300–303.

    PubMed  CAS  Google Scholar 

  114. Goldstein DS. Stress, Catecholamines, and Cardiovascular Disease. Oxford University Press, New York, 1995.

    Google Scholar 

  115. Sinclair D, Shenkin A, Lorimer AR. Normal catecholamine production in a patient with a paroxysmally secreting pheochromocytoma. Ann Clin Biochem 1991; 28: 417–419.

    PubMed  Google Scholar 

  116. Stewart MF, Reed P, Weinkove C, Moriarty KJ, Ralston AJ. Biochemical diagnosis of pheochromocytoma: two instructive case reports. J Clin Pathol 1993; 46: 280–282.

    PubMed  CAS  Google Scholar 

  117. Bravo EL. Evolving concepts in the pathophysiology, diagnosis, and treatment of pheochromocytoma. Endocr Rev 1994; 15: 356–368.

    PubMed  CAS  Google Scholar 

  118. Shawar L, Svec F. Pheochromocytoma with elevated metanephrines as the only biochemical finding. J La State Med Soc 1996; 148: 535–538.

    PubMed  CAS  Google Scholar 

  119. Eisenhofer G, Goldstein DS, Stull R, Ropchak TG, Keiser HR, Kopin IJ. Dihydroxyphenylglycol and dihydroxymandelic acid during intravenous infusions of noradrenaline. Clin Sci 1987; 73: 123–125.

    PubMed  CAS  Google Scholar 

  120. Eriksson BM, Persson BA. Liquid chromatographic method for the determination of 3,4-dihydroxyphenylethylene glycol and 3,4-dihydroxymandelic acid in plasma. J Chromatogr 1987; 386: 1–9.

    PubMed  CAS  Google Scholar 

  121. Kawamura M, Kopin IJ, Kador PF, Sato S, Tjurmina O, Eisenhofer G. Effects of aldehyde/aldose reductase inhibition on neuronal metabolism of norepinephrine. J Auron Nerv Syst 1997; 66: 145–148.

    CAS  Google Scholar 

  122. Eisenhofer G, Pecorella W, Pacak K, Hooper D, Kopin IJ, Goldstein DS. The neuronal and extraneuronal origins of plasma 3-methoxy-4-hydroxyphenylglycol in rats. J Auton Nerv Syst 1994; 50: 93107.

    Google Scholar 

  123. Eisenhofer G, Friberg P, Rundqvist B, et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation 1996; 93: 1667–1676.

    PubMed  CAS  Google Scholar 

  124. Blombery PA, Kopin IJ, Gordon EK, Markey SP, Ebert MH. Conversion of MHPG to vanillylmandelic acid. Implications for the importance of urinary MHPG. Arch Gen Psychiatry 1980; 37: 1095 1098.

    Google Scholar 

  125. Märdh G, Änggard E. Norepinephrine metabolism in man using deuterium labelling: origin of 4hydroxy-3-methoxymandelic acid. J Neurochem 1984; 42: 43–46.

    PubMed  Google Scholar 

  126. Eisenhofer G, Aneman A, Hooper D, Rundqvist B, Friberg P. Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans. J Neurochem 1996; 66: 1565–1573.

    PubMed  Google Scholar 

  127. Eisenhofer G, Goldstein DS, Kopin IJ. Plasma dihydroxyphenylglycol for estimation of noradrenaline neuronal reuptake in the sympathetic nervous system in vivo. Clin Sci 1989; 76: 171–182.

    PubMed  CAS  Google Scholar 

  128. Eisenhofer G, Esler MD, Meredith IT, et al. Sympathetic nervous function in human heart as assessed by cardiac spillovers of dihydroxyphenylglycol and norepinephrine. Circulation 1992; 85: 1775–1785.

    PubMed  CAS  Google Scholar 

  129. Eisenhofer G. Plasma normetanephrine for examination of extraneuronal uptake and metabolism of noradrenaline in rats. Naunyn Schmiedebergs Arch Pharmacol 1994; 349: 259–269.

    PubMed  CAS  Google Scholar 

  130. Eisenhofer G, Rundqvist B, Friberg P. Determinants of cardiac tyrosine hydroxylase activity during exercise-induced sympathetic activation in humans. Am J Physiol 1998; 43: R626 - R634.

    Google Scholar 

  131. Lenders JWM, Willemsen JJ, Beissel T, Kloppenborg PWC, Thien T, Benrad TJ. Value of the plasma norepinephrine/3,4-dihydroxyphenylglycol ratio for the diagnosis of pheochromocytoma. Am J Med 1992; 92: 147–152.

    PubMed  CAS  Google Scholar 

  132. Ferrante A, Bellantone R, Barbarino A, et al. Paroxystic hypertension in a long-term hemodialyzed patient. Successful adrenalectomy for a dopamine-producing pheochromocytoma. J Endocrinol Invest 1995; 18: 656–662.

    PubMed  CAS  Google Scholar 

  133. Graefe KH, Henseling M. Neuronal and extraneuronal uptake and metabolism of catecholamines Gen Pharmacol 1983; 14: 27–33.

    CAS  Google Scholar 

  134. Eisenhofer G, Goldstein DS, Ropchak TG, Nguyen HQ, Keiser HR, Kopin IJ. Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol. J Auton Nerv Syst 1988; 24: 1–14.

    PubMed  CAS  Google Scholar 

  135. Goldstein DS, Eisenhofer G, Stull R, Folio CJ, Keiser HR, Kopin IJ. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans. J Clin Invest 1988; 81: 213–220.

    PubMed  CAS  Google Scholar 

  136. Eisenhofer G, Smolich JJ, Esler MD. Disposition of endogenous adrenaline compared to noradrenaline released by cardiac sympathetic nerves in the anaesthetized dog. Naunyn Schmiedebergs Arch Pharmacol 1992; 345: 160–171.

    PubMed  CAS  Google Scholar 

  137. Brown M. Simultaneous assay of noradrenaline and its deaminated metabolite, dihydroxyphenylglycol, in plasma: a simplified approach to the exclusion of pheochromocytoma in patients with borderline elevation of plasma noradrenaline concentration. Eur J Clin Invest 1984; 14: 67–72.

    PubMed  CAS  Google Scholar 

  138. Atuk NO, Hanks JB, Weltman J, Bogdonoff DL, Boyd DG, Vance ML. Circulating dihydroxyphenylglycol and norepinephrine concentrations during sympathetic nervous system activation in patients with pheochromocytoma. J Clin Endocrinol Metab 1994; 79: 1609–1614.

    PubMed  CAS  Google Scholar 

  139. Nakada T, Sasagawa I, Kubota Y, Suzuki H, Ishigooka M, Watanabe M. Dihydroxyphenylglycol in pheochromocytoma: its diagnostic use for norepinephrine dominant tumor. J Urol 1996; 155: 14–18.

    PubMed  CAS  Google Scholar 

  140. Eisenhofer G, Esler MD, Meredith IT, Ferner C, Lambert G, Jennings G. Neuronal re-uptake of noradrenaline by sympathetic nerves in humans. Clin Sci 1991; 80: 257–263.

    PubMed  CAS  Google Scholar 

  141. Esler MD, Wallin G, Dorward PK, et al. Effects of desipramine on sympathetic nerve firing and norepinephrine spillover to plasma in humans. Am J Physiol 1991; 260: R817 - R823.

    PubMed  CAS  Google Scholar 

  142. Eisenhofer G, Rundqvist B, Aneman A, et al. Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines. J Clin Endocrinol Metab 1995; 80: 3009–3017.

    PubMed  CAS  Google Scholar 

  143. Eisenhofer G, Friberg P, Pacak K, et al. Plasma metadrenalines: do they provide useful information about sympatho-adrenal function and catecholamine metabolism? Clin Sci 1995; 88: 533–542.

    PubMed  CAS  Google Scholar 

  144. Märdh G, Luehr CA, Vallee BL. Human class I alcohol dehydrogenases catalyze the oxidation of glycols in the metabolism of norepinephrine. Proc Natl Acad Sci USA 1985; 82: 4979–4982.

    PubMed  Google Scholar 

  145. Märdh G, Dingley AL, Auld DS, Vallee BL. Human class II (pi) alcohol dehydrogenase has a redox-specific function in norepinephrine metabolism. Proc Natl Acad Sci USA 1986; 83: 8908–8912.

    PubMed  Google Scholar 

  146. Peaston RT, Lai LC. Biochemical detection of pheochromocytoma: Should we still be measuring urinary HMMA? J Clin Pathol 1993; 46: 734–737.

    PubMed  CAS  Google Scholar 

  147. Tormey WP, FitzGerald RJ. Pheochromocytoma: a laboratory experience. Ir J Med Sci 1995; 164: 142–145.

    PubMed  CAS  Google Scholar 

  148. Momex R, Peyrin L. The biological diagnosis of pheochromocytoma. Bull Mem Acad R Med Belg 1996; 151: 269–277.

    Google Scholar 

  149. Peaston RT, Lennard TW, Lai LC. Overnight excretion of urinary catecholamines and metabolites in the detection of pheochromocytoma. J Clin Endocrinol Metab 1996; 81: 1378–1384.

    PubMed  CAS  Google Scholar 

  150. Eisenhofer G, Keiser H, Friberg P, et al. Plasma metanephrines are markers of pheochromocytoma produced by catechol-O-methyltransferase within tumors. J Clin Endocrinol Metab 1998; 83: 2175 2185.

    Google Scholar 

  151. Roth JA. Membrane-bound catechol-O-methyltransferase: a reevaluation of its role in the 0-methylation of the catecholamine neurotransmitters. Rev Physiol Biochem Pharmacol 1992; 120: 1–29.

    PubMed  CAS  Google Scholar 

  152. Aprill BS, Drake AT Lasseter DH, Shakir KM. Silent adrenal nodules in von Hippel-Lindau disease suggest pheochromocytoma. Ann Intern Med 1994; 120: 485–487.

    PubMed  CAS  Google Scholar 

  153. Eisenhofer G, Finberg JP. Different metabolism of norepinephrine and epinephrine by catechol-Omethyltransferase and monoamine oxidase in rats. J Pharmacol Exp Ther 1994; 268: 1242–1251.

    PubMed  CAS  Google Scholar 

  154. Lenders JWM, Eisenhofer G, Abeling NGGM, et al. Specific genetic deficiencies of the A and B isozymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996; 97: 1010–1019.

    PubMed  CAS  Google Scholar 

  155. Box JC, Braithwaite MD, Duncan T, Lucas G. Pheochromocytoma, chronic renal insufficiency, and hemodialysis: a combination leading to a diagnostic and therapeutic dilemma. Am Surg 1997; 63: 314–316.

    PubMed  CAS  Google Scholar 

  156. Peyrin L, Cottet-Emard JM, Pagliari R, Cottet-Emard RM, Badet C, Mornex R. Plasma methoxyamines assay: a practical advance for the diagnosis of pheochromocytoma. Pathol Biol 1994; 42: 847854.

    Google Scholar 

  157. Grossman E, Goldstein DS, Hoffman A, Keiser HR. Glucagon and clonidine testing in the diagnosis of pheochromocytoma. Hypertension 1991; 17: 733–741.

    PubMed  CAS  Google Scholar 

  158. Bernini GP, Vivaldi MS, Argenio GF, Moretti A, Sgro M, Salvetti A. Frequency of pheochromocytoma in adrenal incidentalomas and utility of the glucagon test for the diagnosis. J Endocrinol Invest 1997; 20: 65–71.

    PubMed  CAS  Google Scholar 

  159. Bradley T, Gewertz BL, Scott WJ, Goldberg LI. Dopamine receptor blockade does not affect the natriuresis accompanying sodium chloride infusion in dogs. J Lab Clin Med 1986; 107: 525–528.

    PubMed  CAS  Google Scholar 

  160. Bravo EL, Gifford RW Jr. Current concepts. Pheochromocytoma: diagnosis, localization and management. N Engl J Med 1984; 311: 1298–1303.

    PubMed  CAS  Google Scholar 

  161. Elliott WJ, Murphy MB. Reduced specificity of the clonidine suppression test in patients with normal plasma catecholamine levels. Am J Med 1988; 84: 419–424.

    PubMed  CAS  Google Scholar 

  162. Elliott WJ, Murphy MB, Straus FH, Jarabak J. Improved safety of glucagon testing for pheochromocytoma by prior alpha-receptor blockade. A controlled trial in a patient with a mixed ganglioneuroma/ pheochromocytoma. Arch Intern Med 1989; 149: 214–216.

    PubMed  CAS  Google Scholar 

  163. Eisenhofer G, Saigusa T, Esler MD, Cox HS, Angus JA, Dorward PK. Central sympathoinhibition and peripheral neuronal uptake blockade after desipramine in rabbits. Am J Physiol 1991; 260: R824 - R832.

    PubMed  CAS  Google Scholar 

  164. Manger WM, Gifford RW Jr. Pheochromocytoma: current diagnosis and management. Clev Clin J Med 1993; 60: 365–378.

    CAS  Google Scholar 

  165. Fink IJ, Reinig JW, Dwyer AJ, Doppman JL, Linehan WM, Keiser HR. MR imaging of pheochromocytomas. J Comput Assist Tomogr 1985; 9: 454–458.

    PubMed  CAS  Google Scholar 

  166. Mukherjee JJ, Peppercorn PD, Reznek RH, et al. Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels. Radiology 1997; 202: 227–231.

    PubMed  Google Scholar 

  167. Schmedtje JF Jr, Sax S, Pool JL, Goldfarb RA, Nelson EB. Localization of ectopic pheochromocytomas by magnetic resonance imaging. Am J Med 1987; 83: 770–772.

    PubMed  Google Scholar 

  168. Kloos RT, Gross MD, Francis IR, Korobkin M, Shapiro B. Incidentally discovered adrenal masses. Endocr Rev 1995; 16: 460–484.

    PubMed  CAS  Google Scholar 

  169. Sisson JC, Frager MS, Valk TW, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med 1981; 305: 12–17.

    PubMed  CAS  Google Scholar 

  170. Saad MF, Frazier OH, Hickey RC, Samaan NA. Intrapericardial pheochromocytoma. Am J Med 1983; 75: 371–376.

    PubMed  CAS  Google Scholar 

  171. Shulkin BL, Shapiro B. Current concepts on the diagnostic use of MIBG in children. J Nucl Med 1998; 39: 679–688.

    PubMed  CAS  Google Scholar 

  172. Letizia C, De Toma G, Massa R, et al. False-positive diagnosis of adrenal pheochromocytoma on iodine-123-MIBG scan. J Endocrinol Invest 1998; 21: 779–783.

    PubMed  CAS  Google Scholar 

  173. Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH. Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med 1985; 26: 576–585.

    PubMed  CAS  Google Scholar 

  174. Lynn MD, Shapiro B, Sisson JC, et al. Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology 1985; 155: 789–792.

    PubMed  CAS  Google Scholar 

  175. Tsuchimochi S, Nakajo M, Nakabeppu Y, Tani A. Metastatic pulmonary pheochromocytomas: positive I-123 MIBG SPECT with negative I-131 MIBG and equivocal I-123 MIBG planar imaging. Clin Nucl Med 1997; 22: 687–690.

    PubMed  CAS  Google Scholar 

  176. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton ICE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabeled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992; 13: 513–521.

    PubMed  CAS  Google Scholar 

  177. Clesham CJ, Kennedy A, Lavender JP, Dollery CT, Wilkins MR. Meta-iodobenzylguanidine (MIBG) scanning in the diagnosis of pheochromocytoma. J Hum Hypertens 1993; 7: 353–356.

    PubMed  CAS  Google Scholar 

  178. Niederhuber JE. Future of positron-emission tomography in oncology. Ann Surg 1998; 227: 324–325.

    PubMed  CAS  Google Scholar 

  179. Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998; 25: 79–83.

    PubMed  CAS  Google Scholar 

  180. Trauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991; 32: 623–48.

    Google Scholar 

  181. Arnold DR, Villemagne VL, Civelek AC, Dannals RF, Wagner HN Jr, Udelsman R. FDG-PET: A sensitive tool for the localization of MIBG-negative pelvic pheochromocytoma. Endocrinologist 1998; 8: 295–298.

    Google Scholar 

  182. Russell WJ, Metcalfe IR, Tonkin AL, Frewin DB. The preoperative management of pheochromocytoma. Anaesth Intensive Care 1998; 26: 196–200.

    PubMed  CAS  Google Scholar 

  183. Briggs RS, Birtwell AJ, Pohl JE. Hypertensive response to labetalol in phaeochromocytoma. Lancet 1978; 1: 1045–1046.

    PubMed  CAS  Google Scholar 

  184. Brogden RN, Heel RC, Speight TM, Avery GS. alpha-Methyl-p-tyrosine: a review of its pharmacology and clinical use. Drugs 1981; 21: 81–89.

    PubMed  CAS  Google Scholar 

  185. Werbel SS, Ober KP. Pheochromocytoma. Update on diagnosis, localization, and management. Med Clin North Am 1995; 79: 131–153.

    PubMed  CAS  Google Scholar 

  186. Fernandez-Cruz L, Taura P, Saenz A, Benarroch G, Sabater L. Laparoscopic approach to pheochromocytoma: hemodynamic changes and catecholamine secretion. World J Surg 1996; 20: 762–768.

    PubMed  CAS  Google Scholar 

  187. Vargas HI, Kavoussi LR, Bartlett DL, et al. Laparoscopic adrenalectomy: a new standard of care. Urology 1997; 49: 673–678.

    PubMed  CAS  Google Scholar 

  188. Walther MM, Keiser HR, Choyke PL, Rayford W, Lyne JC, Linehan WM. Management of hereditary pheochromocytoma in von Hippel-Lindau kindreds with partial adrenalectomy. J Urol 1999; 161: 395–398.

    PubMed  CAS  Google Scholar 

  189. Averbuch SD, Steakley CS, Young RC, et al. Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann Intern Med 1988; 109: 267–273.

    PubMed  CAS  Google Scholar 

  190. Schenker JG, Granat M. Pheochromocytoma and pregnancy: an updated appraisal. Aust N Z J Obstet Gynaecol 1982; 22: 1–10.

    PubMed  CAS  Google Scholar 

  191. Antonelli NM, Dotters DJ, Katz VL, Kuller JA. Cancer in pregnancy: a review of the literature. Part I. Obstet Gynecol Sury 1996; 51: 125–134.

    CAS  Google Scholar 

  192. Oishi S, Sato T. Pheochromocytoma in pregnancy a review of the Japanese literature. Endocr J 1994; 41: 219–225.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pacak, K., Chrousos, G.P., Koch, C.A., Lenders, J.W.M., Eisenhofer, G. (2001). Pheochromocytoma. In: Margioris, A.N., Chrousos, G.P. (eds) Adrenal Disorders. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-101-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-101-5_28

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-029-8

  • Online ISBN: 978-1-59259-101-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics