Skip to main content

Hyperhomocysteinemia, Diabetes, and Cardiovascular Disease

  • Chapter
Primary and Secondary Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

Cardiovascular disease (CVD), which accounts for more deaths globally than any other cause of death, is 2–4× higher in type 2 diabetic patients than in nondiabetic subjects (1, 2). The identification of risk factors that can explain the excess risk for CVD in diabetic patients may improve understanding of the pathophysiological mechanisms of atherosclerosis (Athsc), and allow the development of new preventive or therapeutic measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murray CJL, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997; 349: 1269–1276.

    Google Scholar 

  2. Panzram G. Mortality and survival in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1987; 30: 123–131.

    Article  PubMed  CAS  Google Scholar 

  3. Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. JAMA 1995; 274: 1049–1057.

    Article  PubMed  CAS  Google Scholar 

  4. Refsum H, Ueland PM, Nygârd O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49: 31–62.

    Article  PubMed  CAS  Google Scholar 

  5. Homocysteine lowering trialists’ collaboration. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Br Med J 1998; 316: 894–898.

    Google Scholar 

  6. Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270: 2693–2698.

    Article  PubMed  CAS  Google Scholar 

  7. Pyörälä K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987; 3: 463–524.

    Article  PubMed  Google Scholar 

  8. Nathan DM, Meigs J, Singer DE. The epidemiology of cardiovascular disease in type 2 diabetes mellitus: how sweet it is…or is it? Lancet 1997; 350 (Suppl. I): 4–9.

    Article  Google Scholar 

  9. Wingard DL, Barrett-Connors E, Criqui MH, Suarez L. Clustering of heart disease risk factors in diabetic compared to nondiabetic adults. Am J Epidemiol 1983; 117: 19–26.

    PubMed  CAS  Google Scholar 

  10. Stamler J, Vaccaro O, Neaton JD, Wentworth D, for the Multiple Risk Factor Intervention Trial Research Group. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993; 16: 434–444.

    Google Scholar 

  11. Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet 1997; 350 (Suppl. I): 9–13.

    Article  Google Scholar 

  12. Mogensen CE, Poulsen PL. Epidemiology of microalbuminuria in diabetes and in the background population. Curr Opin Nephrol Hypertens 1994; 3: 248–256.

    Article  PubMed  CAS  Google Scholar 

  13. Gall M-A. Albuminuria in non-insulin-dependent diabetes mellitus. Dan Med Bull 1997; 44: 465–485.

    PubMed  CAS  Google Scholar 

  14. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in noninsulin-dependent diabetes mellitus. Arch Intern Med 1997; 157: 1413–1418.

    Article  PubMed  CAS  Google Scholar 

  15. Yudkin JS, Forrest RD, Jackson CA. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 1988; ii:530–533.

    Google Scholar 

  16. Deckert T, Kofoed-Enevoldsen A, N¢rgaard K, Borch-Johnson K, Feldt-Rasmussen B, Jensen T. Microalbuminuria: implications for micro-and macrovascular disease. Diabetes Care 1992; 15: 1181–1191.

    Article  PubMed  CAS  Google Scholar 

  17. Stehouwer CDA, Nauta JJP, Zeldenrust GC, Hackeng WHL, Donker AJM, den Ottolander GJH. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. Lancet 1992; 340: 319–323.

    Article  PubMed  CAS  Google Scholar 

  18. Selhub J, Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 1992; 55: 131–138.

    PubMed  CAS  Google Scholar 

  19. Finkelstein JD. The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 1998; 157: S40 - S44.

    Article  PubMed  CAS  Google Scholar 

  20. McCully KS. Homocysteine theory of arteriosclerosis: development and current status. Atheroscl Rev 1983; 11: 157–252.

    CAS  Google Scholar 

  21. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517–527.

    Article  PubMed  CAS  Google Scholar 

  22. Refsum H, Helland S, Ueland PM. Radioenzymic determination of homocysteine in plasma and urine. Clin Chem 1985; 31: 624–628.

    PubMed  CAS  Google Scholar 

  23. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 1993; 39: 1764–1779.

    PubMed  CAS  Google Scholar 

  24. Andersson A, Isaksson A, Hultberg B. Homocysteine export from erythrocytes and its implication for plasma sampling. Clin Chem 1992; 38: 1311–1315.

    PubMed  CAS  Google Scholar 

  25. Clarke R, Woodhouse P, Ulvik A, Frost C, Sherliker P, Refsum H, et al. Variability and determinants of total homocysteine concentrations in plasma in an elderly population. Clin Chem 1998; 44: 102–107.

    PubMed  CAS  Google Scholar 

  26. Guttormsen AB, Schneede J, Fiskerstrand T, Ueland PM, Refsum HM. Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects. J Nutr 1994; 124: 1934–1941.

    PubMed  CAS  Google Scholar 

  27. Graham IM, Daly LE, Refsum HM, Robinson K, Brattström LE, Ueland PM, et al. Plasma homocysteine as a risk factor for vascular disease. JAMA 1997; 277: 1775–1781.

    Article  PubMed  CAS  Google Scholar 

  28. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: The Metabolic and Molecular Bases of Inherited Disease, 7th ed. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York: McGraw-Hill, 1995; 1279–1327.

    Google Scholar 

  29. Carey MC, Donovan DE, FitzGerald O, McAuley FD. Homocystinuria. I. A clinical and pathological study of nine subjects in six families. Am J Med 1968; 45: 7–25.

    Article  PubMed  CAS  Google Scholar 

  30. Kang SS, Zhou J, Wong PWK, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988; 43: 14–21.

    Google Scholar 

  31. Kluijtmans LAJ, Kastelein JJP, Lindemans J, Boers GHJ, Heil SG, Bruschke AVG, et al. Thermolabile methylenetretrahydrofolate reductase in coronary artery disease. Circulation 1997; 96: 2573–2577.

    Article  PubMed  CAS  Google Scholar 

  32. Brättström L, Wilcken DEL, Öhrvik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 1998; 98: 2520–2526.

    Article  PubMed  Google Scholar 

  33. Miller JW, Ribaya-Mercado JD, Russell RM, Shepard DC, Morrow FD, Cochary EF, et al. Effect of vitamin B6 deficiency on plasma homocysteine concentrations. Am J Clin Nutr 1992; 55: 1154–1160.

    PubMed  CAS  Google Scholar 

  34. Andersson A, Brättström L, Israelsson B, Isaksson A, Hamfelt A, Hultberg B. Plasma homocysteine before and after methionine loading with regard to age, gender, and menopausal status. Eur J Clin Invest 1992; 22: 79–87.

    Article  PubMed  CAS  Google Scholar 

  35. Wouters MGAJ, Moorrees MTEC, van der Mooren MJ, Blom HJ, Boers GHJ, Schellekens LA, et al. Plasma homocysteine and menopausal status. Eur J Clin Invest 1995; 25: 801–805.

    Article  PubMed  CAS  Google Scholar 

  36. Giltay EJ, Hoogeveen EK, Elbers JMH, Gooren LJG, Asscheman H, Stehouwer CDA. Effects of sex steroids on plasma total homocysteine levels: a study in transsexual males and females. J Clin Endocrinol Metab 1998; 83: 550–553.

    Article  PubMed  CAS  Google Scholar 

  37. Giri S, Thompson PD, Taxel P, Contois JH, Otvos J, Allen R, et al. Oral estrogen improves serum lipids, homocysteine and fibrinolysis in elderly men. Atherosclerosis 1998; 137: 359–366.

    Article  PubMed  CAS  Google Scholar 

  38. Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimens. Metabolism 1975; 24: 721–735.

    Article  PubMed  CAS  Google Scholar 

  39. Arnadottir M, Hultberg B, Nilsson-Ehle P, Thysell H. The effect of reduced glomerular filtration rate on plasma total homocysteine concentration. Scand J Clin Lab Invest 1996; 56: 41–46.

    Article  PubMed  CAS  Google Scholar 

  40. Guttormsen AB, Ueland PM, Svarstad E, Refsum H. Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure. Kidney Int 1997; 52: 495–502.

    Article  PubMed  CAS  Google Scholar 

  41. van Guldener C, Donker AJM, Jakobs C, Teerlink T, de Meer K, Stehouwer CDA. No net renal extraction of homocysteine in fasting humans. Kidney Int 1998; 54: 166–169.

    Article  Google Scholar 

  42. Nygârd O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE, et al. Total plasma homocysteine and cardiovascular risk profile: the Hordaland Homocysteine Study. JAMA 1995; 274: 1526–1533.

    Article  PubMed  Google Scholar 

  43. Nygârd O, Refsum H, Ueland PM, Stensvold I, Nordrehaug JE, Kvâle G, et al. Coffee consumption and plasma total homocysteine: the Hordaland Homocysteine Study. Am J Clin Nutr 1997; 65: 136–143.

    PubMed  Google Scholar 

  44. Nygârd O, Refsum H, Ueland PM, Vollset SE. Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study. Am J Clin Nutr 1998; 67: 263–270.

    PubMed  Google Scholar 

  45. de Lorgeril M, Salen P, Paillard F, Lacan P, Richard G. Lipid-lowering drugs and homocysteine. Lancet 1999; 353: 209–210.

    Article  PubMed  Google Scholar 

  46. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969; 56: 111–128.

    PubMed  CAS  Google Scholar 

  47. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, et al. The natural history of homocystinuria due to cystathionine 13-synthase deficiency. Am J Hum Genet 1985; 37: 1–31.

    PubMed  CAS  Google Scholar 

  48. Wilcken DEL, Wilcken B. The pathogenesis of coronary artery disease: a possible role for methionine metabolism. J Clin Invest 1976; 57: 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  49. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, et al. Hyperhomocysteinemia: an independent risk factors for vascular disease. N Engl J Med 1991; 324: 1149–1155.

    Article  PubMed  CAS  Google Scholar 

  50. Danesh J, Lewington S. Plasma homocysteine and coronary heart disease: systematic review of published epidemiological studies. J Cardiovasc Risk 1998; 5: 229–232.

    Article  PubMed  CAS  Google Scholar 

  51. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 1995; 346: 1395–1398.

    Article  PubMed  CAS  Google Scholar 

  52. Petri M, Roubenoff R, Dallal GE, Nadeau MR, Selhub J, Rosenberg IH. Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus. Lancet 1996; 348: 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  53. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer Disease. Arch Neurol 1998; 55: 1449–1455.

    Article  PubMed  CAS  Google Scholar 

  54. Verhoef P, Hennekens CH, Malinow MR, Kok FJ, Willett WC, Stampfer MJ. A prospective study of plasma homocyst(e)ine and risk of ischemic stroke. Stroke 1994; 25: 1924–1930.

    Article  PubMed  CAS  Google Scholar 

  55. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992; 268: 877–881.

    Article  PubMed  CAS  Google Scholar 

  56. Chasan-Taber L, Selhub J, Rosenberg IH, Malinow MR, Terry P, Tishler PV, et al. A prospective study of folate and vitamin B6 and risk of myocardial infarction in US Physicians. J Am Coll Nutr 1996; 15: 136–143.

    PubMed  CAS  Google Scholar 

  57. Arnesen E, Refsum H, Boma KH, Ueland PM, Forde OH, Nordrehaug JE. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995; 24: 704–709.

    Article  PubMed  CAS  Google Scholar 

  58. Wald NJ, Watt HC, Law MR, Weir DG, McPartlin J, Scott JM. Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Intern Med 1998; 158: 862–867.

    Article  PubMed  CAS  Google Scholar 

  59. Folsom AR, Nieto FJ, McGovern PG, Tsai MY, Malinow MR, Eckfeldt JH, et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymor phisms, and B vitamins. The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1998; 98: 204–210.

    Article  PubMed  CAS  Google Scholar 

  60. Nygârd O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997; 337: 230–236.

    Article  PubMed  Google Scholar 

  61. Bostom AG, Shemin D, Verhoef P, Nadeau MR, Jacques PF, Selhub J, et al. Elevated fasting total plasma homocysteine levels and cardiovascular disease outcomes in maintenance dialysis patients: a prospective study. Arterioscl Thromb Vasc Biol 1997; 17: 2554–2558.

    Article  PubMed  CAS  Google Scholar 

  62. Moustapha A, Naso A, Nahlawi M, Gupta A, Arheart KL, Jacobson DW, et al. Prospective study of hyperhomocysteinemia as an adverse cardiovascular risk factor in end-stage renal disease. Circulation 1998; 97: 138–141.

    Article  PubMed  CAS  Google Scholar 

  63. Alfthan G, Pekkanen J, Jauhiainen M, Pitkäniemi J, Karvonen M, Tuomilehto J, et al. Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 1994; 106: 9–19.

    Article  PubMed  CAS  Google Scholar 

  64. Stehouwer CDA, Weijenberg MP, van den Berg M, Jakobs C, Feskens EJM, Kromhout D. Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men: a ten-year follow-up. Arterioscl Thromb Vasc Biol 1998; 18: 1895–1901.

    Article  PubMed  CAS  Google Scholar 

  65. Evans RW, Shaten J, Hempel JD, Cutler JA, Kuller LH, for the MRFIT Research group. Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arterioscl Thromb Vasc Biol 1997; 17: 1947–1953.

    Google Scholar 

  66. den Heijer M, Koster T, Blom HJ, Bos GMJ, Briët E, Reitsma PH, et al. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 1996; 334: 759–762.

    Article  Google Scholar 

  67. Ridker PM, Hennekens CH, Selhub J, Miletich JP, Malinow MR, Stampfer MJ. Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism. Circulation 1997; 95: 1777–1782.

    Article  PubMed  CAS  Google Scholar 

  68. den Heijer M, Rosendaal FR, Blom HJ, Gerrits WBJ, Bos GMJ. Hyperhomocysteinemia and venous thrombosis: a meta-analysis. Thromb Haemost 1998; 80: 874–877.

    Google Scholar 

  69. Ross R. Mechanisms of disease: atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340: 115–126.

    Article  PubMed  CAS  Google Scholar 

  70. Welch GN, Loscalzo J. Mechanisms of disease: homocysteine and atherothrombosis. N Engl J Med 1998; 338: 1042–1050.

    Article  PubMed  CAS  Google Scholar 

  71. Celermajer DS, Sorensen K, Ryalls M, Robinson J, Thomas O, Leonard JV, et al. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocysteinuria but not in their heterozygous parents. J Am Coll Cardiol 1993; 22: 854–858.

    Article  PubMed  CAS  Google Scholar 

  72. Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilatation in humans. Circulation 1997; 95: 1119–1121.

    Article  PubMed  CAS  Google Scholar 

  73. Chambers JC, McGregor A, Jean-Marie K, KoonerJS. Acute hyperhomocysteinaemia and endothelial dysfunction. Lancet 1998; 351: 36–37.

    Article  PubMed  CAS  Google Scholar 

  74. Bellamy MF, McDowell IFW, Ramsey MW, Brownlee M, Bones C, Newcombe RG, et al. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 1998; 98: 1848–1852.

    Article  PubMed  CAS  Google Scholar 

  75. van den Berg M, Boers GHJ, Franken DG, Blom HJ, van Kamp GJ, Jakobs C, et al. Hyperhomocysteinaemia and endothelial dysfunction in young patients with peripheral arterial occlusive disease. Eur J Clin Invest 1995; 25: 176–181.

    Article  PubMed  Google Scholar 

  76. de Jong SC, Stehouwer CDA, van den Berg M, Vischer UM, Rauwerda JA, Emeis JJ. Endothelial marker proteins in hyperhomocysteinaemia. Thromb Haemost 1997; 78: 1332–1337.

    PubMed  Google Scholar 

  77. World Health Organisation Study Group on Diabetes Mellitus. Technical Report Series No. 727. Geneva, WHO, 1985.

    Google Scholar 

  78. Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJC, Jakobs C, Bouter LM, et al. Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease especially in non-insulin-dependent diabetes mellitus: a population-based study. Arterioscl Thromb Vasc Biol 1998; 18: 133–138.

    Article  PubMed  CAS  Google Scholar 

  79. Mölgaard J, Malinow MR, Lassvik C, Holm A-C, Upson B, Olsson AG. Hyperhomocyst(e)inaemia: an independent risk factor for intermittent claudication. J Intern Med 1992; 231: 273–279.

    Article  PubMed  Google Scholar 

  80. Bergmark C, Mansoor MA, Swedenborg J, de Faire U, Svardal AM, Ueland PM. Hyperhomocysteinemia in patients operated for lower extremity ischaemia below the age of 50; effect of smoking and extent of disease. Eur J Vasc Surg 1993; 7: 391–396.

    Article  PubMed  CAS  Google Scholar 

  81. Brattström L, Israelsson B, Norrving B, Bergqvist D, Thörne J, Hultberg B, et al. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. Atherosclerosis 1990; 81: 51–60.

    Article  PubMed  Google Scholar 

  82. Prineas RJ, Crow RS, Blackburn H. The Minnesota Code manual of electrocardiographic findings. In: Standards and procedures for measurement and classification. Boston, MA: John Wright, 1982.

    Google Scholar 

  83. Joosten E, van den Berg A, Riezler R, Naurath HJ, Lindenbaum J, Stabler SP, et al. Metabolic evidence that deficiencies of vitamin B-12 (cobalamin), folate, and vitamin B-6 occur commonly in elderly people. Am J Clin Nutr 1993; 58: 468–476.

    PubMed  CAS  Google Scholar 

  84. Savage DG, Lindenbaum J, Stabler SP, Allen RH. Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med 1994; 96: 239–246.

    Article  PubMed  CAS  Google Scholar 

  85. UbbinkJB, Vermaak WJH, Bissbort S. Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chromatogr 1991; 565: 441–446.

    Google Scholar 

  86. Munshi MN, Stone A, Fink L, Fonseca V. Hyperhomocysteinemia following a methionine load in patients with non-insulin-dependent diabetes mellitus and macrovascular disease. Metabolism 1996; 45: 133–135.

    Article  PubMed  CAS  Google Scholar 

  87. Genest JJ, McNamara JR, Salem DN, Wilson PWF, Schaeffer EJ, Malinow MR. Plasma homocyst(e)ine levels in men with premature coronary artery disease. J Am Coll Cardiol 1990; 16: 1114–1119.

    Article  PubMed  Google Scholar 

  88. Araki A, Sako Y, Ito H. Plasma homocysteine concentrations in Japanese patients with non-insulindependent diabetes mellitus: effect of parenteral methylcobalamin treatment. Atherosclerosis 1993; 103: 149–157.

    Article  PubMed  CAS  Google Scholar 

  89. Carlsen SM, Falling I, Grill V, Bjerve KS, Schneede J, Refsum H. Metformin increases total serum homocysteine levels in non-diabetic male patients with coronary heart disease. Scand J Clin Lab Invest 1997; 57: 521–528.

    Article  PubMed  CAS  Google Scholar 

  90. Hoogeveen EK, Kostense PJ, Jakobs C, DekkerJM, Nijpels G, Heine RJ, et al. Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes: 5-year follow-up of the Hoorn Study. Circulation 2000; 101: 1506–1511.

    Article  PubMed  CAS  Google Scholar 

  91. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in noninsulin-dependent diabetes mellitus. Arch Intern Med 1997; 157: 1413–1418.

    Article  PubMed  CAS  Google Scholar 

  92. Yudkin JS, Forrest RD, Jackson CA. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 1988; ii:530–533.

    Google Scholar 

  93. Metcalf PA, Baker JR, Scragg RKR, Dryson E, Scott AJ, Wild CJ. Dietary nutrient intakes and slight albuminuria in people at least 40 years old. Clin Chem 1993; 39: 2191–2198.

    PubMed  CAS  Google Scholar 

  94. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 1996; 124: 627–632.

    PubMed  CAS  Google Scholar 

  95. Hoogeveen EK, Kostense PJ, Jager A, Heine RI, Jakobs C, Bouter LM, et al. Serum homocysteine level and protein intake are related to risk of microalbuminuria: the Hoorn Study. Kidney Int 1998; 54: 203–209.

    Article  PubMed  CAS  Google Scholar 

  96. Rowe DJF, Dawnay A, Watts GF. Microalbuminuria in diabetes mellitus: review and recommendations for the measurement of albumin in urine. Ann Clin Biochem 1990; 27: 297–312.

    PubMed  CAS  Google Scholar 

  97. Bennett PH, Haffner S, Kasiske BL, Keane WF, Mogensen CE, Parving HH, et al. Screening and management of microalbuminuria in patients with diabetes mellitus: recommendations to the Scientific Advisory Board of the National Kidney Foundation from an Ad Hoc Committee of the Council on Diabetes Mellitus of the National Kidney Foundation. Am J Kidney Dis 1995; 25: 107–112.

    Article  PubMed  CAS  Google Scholar 

  98. Hultberg B, Agardh E, Andersson A, Brattström, Isaksson A, Israelsson B. Increased levels of plasma homocysteine are associated with nephropathy, but not severe retinopathy in type I diabetes mellitus. Scand J Clin Lab Invest 1991; 51: 277–282.

    Article  PubMed  CAS  Google Scholar 

  99. Chico A, Pérez A, Córdoba A, Arcelús R, Carreras G, de Leiva A, et al. Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia 1998; 41: 684–693.

    Article  PubMed  CAS  Google Scholar 

  100. Lanfredini M, Fiorina P, Grazia Peca M, Veronelli A, Mello A, Astorri E, et al. Fasting and postmethionine load homocyst(e)ine values are correlated with microalbuminuria and could contribute to worsening vascular damage in non-insulin-dependent diabetes mellitus patients. Metabolism 1998; 47: 915–921.

    Article  PubMed  CAS  Google Scholar 

  101. Remuzzi G, Ruggenenti P, Benigni A. Understanding the nature of renal disease progression. Kidney Int 1997; 51: 2–15.

    Article  PubMed  CAS  Google Scholar 

  102. Brenner BM, Hostetter TH, Humes HD. Molecular basis of proteinuria of glomerular origin. N Engl J Med 1978; 298: 826–833.

    Article  PubMed  CAS  Google Scholar 

  103. Maddox DA, Brenner BM. Glomerular ultrafiltration. In: The Kidney, 4th ed. Philadelphia: WB Saunders, 1991; 205–244.

    Google Scholar 

  104. Deckert T, Kofoed-Enevoldsen A, Norgaard K, Borch-Johnson K, Feldt-Rasmussen B, Jensen T. Microalbuminuria: implications for micro-and macrovascular disease. Diabetes Care 1992; 15: 1181–1191.

    Article  PubMed  CAS  Google Scholar 

  105. Schaap GH, Bilo HJG, Alferink THR, Oe PL, Donker AJM. The effect of a high protein intake on renal function of patients with chronic renal insufficiency. Nephron 1987; 47: 1–6.

    Article  PubMed  CAS  Google Scholar 

  106. Oakley GP. Eat right and take a multivitamin. N Engl J Med 1998; 338: 1060–1061.

    Article  PubMed  Google Scholar 

  107. Subar AF, Block G, James LD. Folate intake and food sources in the US population. Am J Clin Nutr 1989; 50: 508–516.

    PubMed  CAS  Google Scholar 

  108. Lindenbaum J, Healton EB, Savage DG, Brust JCM, Garrett TJ, Podell ER, et al. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 1988; 318: 1720–1728.

    Article  PubMed  CAS  Google Scholar 

  109. Savage DG, Lindenbaum J. Folate-cobalamin interactions. In: Folate in Health and Disease. Bailey LB, ed. New York: Marcel Dekker, 1995; 237–285.

    Google Scholar 

  110. Campbell NRC. How safe are folic acid supplements? Arch Intern Med 1996; 156: 1638–1644.

    Article  PubMed  CAS  Google Scholar 

  111. Joosten E, van den Berg A, Riezler R, Naurath HJ, Lindenbaum J, Stabler SP, et al. Metabolic evidence that deficiencies of vitamin B-12 (cobalamin), folate and vitamin B-6 occur commonly in elderly people. Am J Clin Nutr 1993; 58: 468–476.

    PubMed  CAS  Google Scholar 

  112. Pennypacker LC, Allen RH, Kelly JP, Matthews M, Grigsby J, Kaye K, et al. High prevalence of cobalamin deficiency in elderly outpatients. J Am Geriatr Soc 1992; 40: 1197–1204.

    PubMed  CAS  Google Scholar 

  113. Yao Y, Yao SL, Yao SS, Yao G, Lou W. Prevalence of vitamin B12 deficiency among geriatric outpatients. J Fam Pract 1992; 35: 524–528.

    PubMed  CAS  Google Scholar 

  114. Wilcken DEL, Wilcken B. The natural history of vascular disease and the effects of treatment. J Inherit Metab Dis 1997; 20: 295–300.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoogeveen, E.K., Rothman, K.J. (2001). Hyperhomocysteinemia, Diabetes, and Cardiovascular Disease. In: Bendich, A., Deckelbaum, R.J. (eds) Primary and Secondary Preventive Nutrition. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-039-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-039-1_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-173-8

  • Online ISBN: 978-1-59259-039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics