Skip to main content

Cytotoxic T-Lymphocytes Reactive to Patient Major Histocompatibility Complex Proteins for Therapy of Brain Tumors

  • Chapter
Brain Tumor Immunotherapy

Abstract

In patients with primary malignant brain tumors (BT), tumor growth has defied conventional therapies comprised of surgery, radiation, and chemotherapy (1–3). The growth and expansion of tumor cells throughout normal brain neuropil often cannot be contained without destroying normal brain tissue. Immunotherapy (IT) strategies became of interest to neuro-oncology researchers, because regeneration of normal brain is considered limited, at best, and because the potential for selectivity in tumor over normal cell destruction is seemingly inherent in the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kornblith, P. L., Walker, M. D., and Cassady, J. R. (1987) Treatment of patients with supratentorial tumors—astrocytomas, oligodendrogliomas and optic gliomas, in Neurologic Oncology ( Kornblith, P. L., Walker, M. D., and Cassady, J. R., eds.), J.B. Lippincott, Philadelphia, pp. 117–154.

    Google Scholar 

  2. Laws, E. R., Jr. and Thapar, K. (1993) Brain tumors. CA Cancer J. Clin. 43, 263–271.

    Article  PubMed  Google Scholar 

  3. Prados, M. D., Berger, M. S., and Wilson, C. B. (1998) Primary central nervous system tumors: advances in knowledge and treatment. CA Cancer J. Clin. 48, 331–360.

    Article  PubMed  CAS  Google Scholar 

  4. Trouillas, P. and Lapras, C. (1970) Active immunotherapy of cerebral tumor. 20 cases. Neuro-Chir. 16, 143–170.

    CAS  Google Scholar 

  5. Takakura, K., Yoshimasa, M., Kubo, O., Ogawa, N., Matsutani, M., and Sano, K. (1972) Adjuvant immunotherapy for malignant brain tumors. Jpn. J. Clin. Oncol. 12, 109–120.

    Google Scholar 

  6. Young, H., Kaplan, A., and Regelson, W. (1977) Immunotherapy with autologous white cell infusions (“lymphocytes”) in the treatment of recurrrent glioblastoma multiforme: a preliminary report. Cancer 40, 1037–1044.

    Article  PubMed  CAS  Google Scholar 

  7. Steinbok, P., Thomas, J. P., Grossman, L., and Dolman, C. L. (1984) Intratumoral autologous mononuclear cells in the treatment of recurrent glioblastoma multiforme. A phase 1 (toxicity) study. J. Neuro-oncol. 2, 147–151.

    CAS  Google Scholar 

  8. Neuwelt, E. A., Clark, K., Kirkpatrick, J. B., and Toben, H. (1978) Clinical studies of intrathecal autologous lymphocyte infusions in patients with malignant glioma: a toxicity study. Ann. Neurol. 4, 307–312.

    Article  PubMed  CAS  Google Scholar 

  9. Vaquero, J., Martinez, R., Barbolla, L., de Haro, J., de Oya, S., Coca, S., and Ramiro, J. (1987) Intrathecal injection of autologous leucocytes in glioblastoma: circulatory dynamics within the subarachnoid space and clinical results. Acta Neurochir. (Wien) 89, 37–42.

    Article  CAS  Google Scholar 

  10. Vaquero, J., Martinez, R., de Haro, J., Barbolla, L., Salazar, J., and Santos, H. (1987) Adoptive immunotherapy in glioblastoma multiforme: experience with the use of intrathecal infusions of autologous leukocytes. Arch. Neurobiol. (Madrid) 50, 183–190.

    CAS  Google Scholar 

  11. Vaquero, J., Martinez, R., Oya, S., Coca, S., Barbolla, L., Ramiro, J., and Salazar, F. G. (1989) Intratumoural injection of autologous lymphocytes plus human lymphoblastoid interferon for the treatment of glioblastoma. Acta Neurochir. (Wien) 98, 35–41.

    Article  CAS  Google Scholar 

  12. Vaquero, J., Martinez, R., Ramiro, J., Salazar, F. G., Barbolla, L., and Regidor, C. (1991) Immunotherapy of glioblastoma with intratumoural administration of autologous lymphocytes and human lymphoblastoid interferon. A further clinical study. Acta Neurochir. (Wien) 109, 42–45.

    Article  CAS  Google Scholar 

  13. Robb, R. J., Kutny, R. M., and Chowdhry, V. (1983) Purification and partial sequence analysis of human T-cell growth factor. Proc. Natl. Acad. Sci. USA 80, 5990–5994.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Grimm, E. A., Mazumder, A., Zhang, H. Z., and Rosenberg, S. A. (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin-2-activated autologous human peripheral blood lymphocytes. J. Exp. Med. 155, 1823–1841.

    Article  PubMed  CAS  Google Scholar 

  15. Herberman, R. B., Hiserodt, J., Vujanovic, N., Balch, C., Lotzova, E., Bolhuis, R., et al. (1987) Lymphokine activated killer cell activity: characteristics of effector cells and their progenitors in blood and spleen. Immunol. Today 8, 178–181.

    Article  Google Scholar 

  16. Kruse, C. A. and Merchant, R. E. (1997) Cellular therapy of brain tumors: clinical trials, in Advances in Neuro-Oncology II ( Kornblith, P. L. and Walker, M. D., eds.), Futura, Armonk, NY. pp. 487–504.

    Google Scholar 

  17. Hayes, R. L., Koslow, M., Hiesiger, E. M., Hymes, K. B., Hochster, H. S., Moore, E. J., et al. (1995) Improved long-term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 76, 840–852.

    Article  PubMed  CAS  Google Scholar 

  18. Nitta, T., Sato, K., Yagita, H., Okumura, K., and Ishii, S. (1990) Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335, 368–371.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshida, J., Takaoka, T., Mizuno, M., Momota, H., and Okada, H. (1996) Cytolysis of malignant glioma cells by lymphokine-activated killer cells combined with antiCD3/antiglioma bifunctional antibody and tumor necrosis factor-alpha. J. Surg. Oncol. 62, 177–182.

    Article  PubMed  CAS  Google Scholar 

  20. Pfosser, A., Brandl, M., Salih, H., Grosse-Hovest, L., and Jung, G. (1999) Role of target antigen in bispecific-antibody-mediated killing of human glioblastoma cells: a pre-clinical study. Int. J. Cancer 80, 612–616.

    Article  PubMed  CAS  Google Scholar 

  21. Henkart, P. A. (1985) Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3, 31–58.

    Article  PubMed  CAS  Google Scholar 

  22. Poltorak, M. and Freed, W. K. (1997) Transplantation into the central nervous system, in Immunology of the Nervous System ( Keane, R. W. and Hickey, W. F., eds.), Oxford University Press, New York, pp. 611–641.

    Google Scholar 

  23. Fontana, A., Hengartner, H., de Tribolet, N., and Weber, E. (1984) Glioblastoma cells release interleukin-1 and factors inhibiting interleukin-2-mediated effects. J. Immunol. 132, 1837–1844.

    Google Scholar 

  24. Gately, C. L., Muul, L. M., Greenwood, M. A., Papazoglou, S., Dick, S. J., Kornblith, P. L., Smith, B. H., and Gately, M. K. (1984) In vitro studies on the cell-mediated immune response to human brain tumors. II. Leukocyte-induced coats of glycosaminoglycan increase the resistance of glioma cells to cellular immune attack. J. Immunol. 133, 3387–3395.

    PubMed  CAS  Google Scholar 

  25. Perry, V. H. (1998) Revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J. Neuroimmunol. 90, 113–121.

    Article  PubMed  CAS  Google Scholar 

  26. Kurpad, S. N., Zhao, X. G., Wikstrand, C. J., Batra, S. K., McLendon, R. E., and Bigner, D. D. (1995) Tumor antigens in astrocytic gliomas. Glia 15, 244–256.

    Article  PubMed  CAS  Google Scholar 

  27. Topalian, S. L., Muul, L. M., Solomon, D., and Rosenberg, S. A. (1987) Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J. Immunol. Methods 102, 127–141.

    Article  PubMed  CAS  Google Scholar 

  28. Kuppner, M. C., Hamou, M. F., and de Tribolet, N. (1988) lmmunohistological and functional analyses of lymphoid infiltrates in human glioblastomas. Cancer Res. 48, 6926–6932.

    Google Scholar 

  29. Kuppner, M. C., Hamou, M. F., and de Tribolet, N. (1990) Activation and adhesion molecule expression on lymphoid infiltrates in human glioblastomas. J. Neuroimmunol. 29, 229–238.

    Article  PubMed  CAS  Google Scholar 

  30. Miescher, S., Whiteside, T. L., de Tribolet, N., and von Fliedner, V. (1988) In situ characterization, clonogenic potential, and anti-tumor cytolytic activity of T lymphocytes infiltrating human brain cancers. J. Neurosurg. 68, 438–448.

    Article  PubMed  CAS  Google Scholar 

  31. Saris, S. C., Spiess, P., Lieberman, D. M., Lin, S., Walbridge, S., and Oldfield, E. H. (1992) Treatment of murine primary brain tumors with systemic interleukin-2 and tumor-infiltrating lymphocytes. J. Neurosurg. 76, 513–519.

    Article  PubMed  CAS  Google Scholar 

  32. Holladay, F. P., Heitz, T., and Wood, G. W. (1992) Anti-tumor activity against established intracerebral gliomas exhibited by cytotoxic T lymphocytes, but not by lymphokine-activated killer cells. J. Neurosurg. 77, 757–762.

    Article  PubMed  CAS  Google Scholar 

  33. Holladay, F. P., Lopez, G., De, M., Morantz, R. A., and Wood, G. W. (1992) Generation of cytotoxic immune responses against a rat glioma by in vivo priming and secondary in vitro stimulation with tumor cells. Neurosurgery 30, 499–505.

    Article  PubMed  CAS  Google Scholar 

  34. Holladay, F. P. and Wood, G. W. (1993) Generation of cellular immune responses against a glioma-associated antigen(s). J. Neuroimmunol. 44, 27–32.

    Article  PubMed  CAS  Google Scholar 

  35. Holladay, F. P., Choudhuri, R., Heitz, T., and Wood, G. W. (1994) Generation of cytotoxic immune responses during the progression of a rat glioma. J. Neurosurg. 80, 90–96.

    Article  PubMed  CAS  Google Scholar 

  36. Merchant, R. E., Baldwin, N. G., Rice, C. D., and Bear, H. D. (1997) Adoptive immunotherapy of malignant glioma using tumor-sensitized T lymphocytes. Neurol. Res. 19, 145–152.

    PubMed  CAS  Google Scholar 

  37. Wahl, W. L., Sussman, J. J., Shu, S., and Chang, A. E. (1994) Adoptive immunotherapy of murine intracerebral tumors with anti-CD3/interleukin-2-activated tumor-draining lymph node cells. J. Immunother. Emphasis Tumor Immunol. 15, 242–250.

    Article  PubMed  CAS  Google Scholar 

  38. Sussman, J. J., Wahl, W. L., Chang, A. E., and Shu, S. (1995) Unique characteristics associated with systemic adoptive immunotherapy of experimental intracerebral tumors. J. Immunother. Emphasis Tumor Immunol. 18, 35–44.

    Article  PubMed  CAS  Google Scholar 

  39. Inoue, M., Plautz, G. E., and Shu, S. (1996) Treatment of intracranial tumors by systemic transfer of superantigen-activated tumor-draining lymph node T cells. Cancer Res. 56, 4702–4708.

    PubMed  CAS  Google Scholar 

  40. Kagamu, H., Touhalisky, J. E., Plautz, G.E., Krauss, J. C., and Shu, S. (1996) Isolation based on L-selectin expression of immune effector T cells derived from tumor-draining lymph nodes. Cancer Res. 56, 4338–4342.

    PubMed  CAS  Google Scholar 

  41. Plautz, G. E., Inoue, M., and Shu, S. (1996) Defining the synergistic effects of irradiation and T-cell immunotherapy for murine intracranial tumors. Cell Immunol. 171, 277–284.

    PubMed  CAS  Google Scholar 

  42. Baldwin, N. G., Rice, C. D., Tuttle, T. M., Bear, H. D., Hirsch, J. I., and Merchant, R. E. (1997) Ex vivo expansion of tumor-draining lymph node cells using compounds which activate intracellular signal transduction. I. Characterization and in vivo anti-tumor activity of glioma-sensitized lymphocytes. J. Neuro-oncol. 32, 19–28.

    Article  CAS  Google Scholar 

  43. Rice, C. D., Baldwin, N. G., Biron, R. T., Bear, H. D., and Merchant, R. E. (1997) Ex vivo expansion of tumor-draining lymph node cells using compounds which activate intracellular signal transduction. II. Cytokine production and in vivo efficacy of glioma-sensitized lymphocytes. J. Neuro-oncol. 32, 29–38.

    Article  CAS  Google Scholar 

  44. Marrack, P. and Kappler, J. (1988) The T-cell repertoire for antigen and MHC. Immunol. Today 9, 308–315.

    Article  PubMed  CAS  Google Scholar 

  45. Kruse, C. A., Mitchell, D. H., Lillehei, K. O., Johnson, S. D., McCleary, E. L., Moore, G. E., Waldrop, S., and Mierau, G. (1989) Differences in two preparations of interleukin-2activated lymphocytes generated in vitro from peripheral blood of patients with malignant brain tumors. Cancer 64, 1629–1637.

    Article  PubMed  CAS  Google Scholar 

  46. Bhondeley, M. K., Mehra, R. D., Mehra, N. K., Mohapatra, A. K., Tandon, P. N., Roy, S., and Bijlani, V. (1988) Imbalances in T-cell subpopulations in human gliomas. J. Neurosurg. 68, 589–593.

    Article  PubMed  CAS  Google Scholar 

  47. Chi, D. D., Merchant, R. E., Rand, R., Conrad, A. J., Garrison, D., Turner, R., Morton, D. L., and Hoon, D. S. (1997) Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am. J. Pathol. 150, 2143–2152.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Kitahara, T., Watanabe, O., Yamaura, A., Makino, H., Watanabe, T., Suzuki, G., and Okumura, K. (1987) Establishment of interleukin-2-dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor. J. Neuro-oncol. 4, 329–336.

    CAS  Google Scholar 

  49. Holladay, F. P., Heitz-Turner, T., Bayer, W. L., and Wood, G. W. (1996) Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/ IV astrocytoma. J. Neuro-oncol. 27, 179–189.

    CAS  Google Scholar 

  50. Plautz, G.E., Barnett, G. H., Miller, D. W., Cohen, B. H., Prayson, R. A., Krauss, J. C., et al. (1998) Systemic T-cell adoptive immunotherapy of malignant gliomas. J. Neurosurg. 89, 42–51.

    Article  PubMed  CAS  Google Scholar 

  51. Bigner, D. D., Bigner, S. H., Ponten, J., Westermark, B., Mahaley, M. S., Ruoslahti, E., et al. (1981) Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J. Neuropathol. Exp. Neurol. 40, 201–229.

    Article  PubMed  CAS  Google Scholar 

  52. Redd, J. M., Lagarde, A. C., Kruse, C. A., and Bellgrau, D. (1992) Allogeneic tumor-specific cytotoxic T lymphocytes. Cancer Immunol. Immunother. 34, 349–354.

    Article  PubMed  CAS  Google Scholar 

  53. Lampson, L. A. and Hickey, W. F. (1986) Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from “histologically normal” to that showing different levels of glial tumor involvement. J. Immunol. 136, 4054–4062.

    PubMed  CAS  Google Scholar 

  54. Lampson, L. A. (1995) Interpreting MHC class I expression and class I/class II reciprocity in the CNS: reconciling divergent findings. Microsc. Res. Technol. 32, 267–285.

    Article  CAS  Google Scholar 

  55. Kruse, C. A., Lillehei, K. O., Mitchell, D. H., Kleinschmidt-DeMasters, B., and Bellgrau, D. (1990) Analysis of interleukin-2 and various effector cell populations in adoptive immunotherapy of 9L rat gliosarcoma: allogeneic cytotoxic T lymphocytes prevent tumor take. Proc. Natl. Acad. Sci. USA 87, 9577–9581.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Kruse, C. A., Schiltz, P. M., Bellgrau, D., Kong, Q., and Kleinschmidt-DeMasters, B. K. (1994) Intracranial administrations of single or multiple-source allogeneic cytotoxic T lymphocytes: chronic therapy for primary brain tumors. J. Neuro-oncol. 19, 161–168.

    Article  CAS  Google Scholar 

  57. Fleshner, M., Watkins, L. R., Redd, J. M., Kruse, C. A., and Bellgrau, D. (1992) A 9L gliosarcoma transplantation model for studying adoptive immunotherapy into the brains of conscious rats. Cell Transplant 1, 307–312.

    PubMed  CAS  Google Scholar 

  58. Kruse, C. A., Kong, Q., Schultz, P. M., and Kleinschmidt-DeMasters, B. K. (1994) Migration of activated lymphocytes when adoptively transferred into cannulated rat brain. J. Neuroimmunol. 55, 11–21.

    Article  PubMed  CAS  Google Scholar 

  59. Kruse, C. A. and Beck, L. T. (1997) Artificial-capillary-system development of human alloreactive cytotoxic T-lymphocytes that lyse brain tumours. Biotechnol. Appl. Biochem. 25, 197–205.

    PubMed  CAS  Google Scholar 

  60. Kruse, C. A., Cepeda, L., Owens, B., Johnson, S. D., Stears, J., and Lillehei, K. O. (1997) Treatment of recurrent glioma with intra-cavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol. Immunother. 45, 77–87.

    Article  PubMed  CAS  Google Scholar 

  61. Bodmer, S., Strommer, K., Frei, K., Siepl, C., de Tribolet, N., Heid, I., and Fontana, A. (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J. Immunol. 143, 3222–3229.

    PubMed  CAS  Google Scholar 

  62. Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., Royston, I., and Sobol, R. E. (1996) Eradication of established intracranial rat gliomas by transforming growth factor-beta antisense gene therapy. Proc. Natl. Acad. Sci. USA 93, 2909–2914.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Heimans, J. J., Wagstaff, J., Schreuder, W. O., Wolbers, J. G., Baars, J. W., Polman, C. H., et al. (1991) Treatment of leptomeningeal carcinomatosis with continuous intraventricular infusion of recombinant interleukin-2. Surg. Neurol. 35, 244–247.

    Article  PubMed  CAS  Google Scholar 

  64. Shimizu, K., Okamoto, Y., Miyao, Y., Yamada, M., Ushio, Y., Hayakawa, T., Ikeda, H., and Mogami, H. (1987) Adoptive immunotherapy of human meningeal gliomatosis and carcinomatosis with LAK cells and recombinant interleukin-2. J. Neurosurg. 66, 519–521.

    Article  PubMed  CAS  Google Scholar 

  65. Rewers, A. B., Redgate, E. S., Deutsch, M., Fisher, E. R., and Boggs, S. S. (1990) A new rat brain tumor model: glioma disseminated via the cerebral spinal fluid pathways. J. Neurooncol. 8, 213–219.

    PubMed  CAS  Google Scholar 

  66. Kattman, S. J., Lamb, C., Paul, D. B., Gup, C. J., Gomez, G., Kleinschmidt-DeMasters, B. K., and Kruse, C. A. (1999) Immunogenicity and tumorigenicity of a 9L gliosarcoma clone producing y-IFN. FASEB J 13, A297.

    Google Scholar 

  67. Kruse, C. A., Roper, M. D., Kleinschmidt-DeMasters, B. K., Banuelos, S. J., Smiley, W. R., Robbins, J. M., and Burrows, F. J. (1997) Purified herpes simplex thymidine kinase retrovector particles. I. In vitro characterization, in situ transduction efficiency, and histopathological analyses of gene therapy-treated brain tumors. Cancer Gene Ther. 4, 118–128.

    Google Scholar 

  68. Kruse, C. A., Lamb, C., Hogan, S., Smiley, W. R., Kleinschmidt-DeMasters, B. K., and Burrows, F. J. (2000) Purified herpes simplex thymidine kinase retroviral particles. H. Influence of clinical parameters and bystander killing mechanisms. Cancer Gene Ther. 7, 118–127.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kruse, C.A., Rubinstein, D. (2001). Cytotoxic T-Lymphocytes Reactive to Patient Major Histocompatibility Complex Proteins for Therapy of Brain Tumors. In: Liau, L.M., Becker, D.P., Cloughesy, T.F., Bigner, D.D. (eds) Brain Tumor Immunotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-035-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-035-3_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-110-3

  • Online ISBN: 978-1-59259-035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics