Skip to main content

MOBscan: Automated Annotation of MOB Relaxases

  • Protocol
  • First Online:
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2075))

Abstract

Relaxase-based plasmid classification has become popular in the past 10 years. Nevertheless, it is not obvious how to assign a query protein to a relaxase MOB family. Automated protein annotation is commonly used to classify them into families, gathering evolutionarily related proteins that likely perform the same function, while circumventing the problem of different naming conventions. Here, we implement an automated method, MOBscan, to identify relaxases and classify them into any of the nine MOB families. MOBscan is a web tool that carries out a HMMER search against a curated database of MOB profile Hidden Markov models. It is freely available at https://castillo.dicom.unican.es/mobscan/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cabezon E et al (2015) Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 39(1):81–95

    CAS  PubMed  Google Scholar 

  2. de la Cruz F et al (2010) Conjugative DNA metabolism in gram-negative bacteria. FEMS Microbiol Rev 34(1):18–40

    Article  PubMed  Google Scholar 

  3. Goessweiner-Mohr N et al (2014) Conjugation in gram-positive bacteria. Microbiol Spectr 2(4):PLAS-0004-2013

    Article  PubMed  Google Scholar 

  4. Francia MV et al (2004) A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28(1):79–100

    Article  CAS  PubMed  Google Scholar 

  5. Garcillan-Barcia MP, Francia MV, de la Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33(3):657–687

    Article  CAS  PubMed  Google Scholar 

  6. Guglielmini J, de la Cruz F, Rocha EP (2013) Evolution of conjugation and type IV secretion systems. Mol Biol Evol 30(2):315–331

    Article  CAS  PubMed  Google Scholar 

  7. Guglielmini J et al (2011) The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 7(8):e1002222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wisniewski JA et al (2016) TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens. Mol Microbiol 99(5):884–896

    Article  CAS  PubMed  Google Scholar 

  9. Chandler M et al (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11(8):525–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varsaki A et al (2003) Genetic and biochemical characterization of MbeA, the relaxase involved in plasmid ColE1 conjugative mobilization. Mol Microbiol 48(2):481–493

    Article  CAS  PubMed  Google Scholar 

  11. Scherzinger E, Kruft V, Otto S (1993) Purification of the large mobilization protein of plasmid RSF1010 and characterization of its site-specific DNA-cleaving/DNA-joining activity. Eur J Biochem 217(3):929–938

    Article  CAS  PubMed  Google Scholar 

  12. Pansegrau W, Schroder W, Lanka E (1994) Concerted action of three distinct domains in the DNA cleaving-joining reaction catalyzed by relaxase (TraI) of conjugative plasmid RP4. J Biol Chem 269(4):2782–2789

    CAS  PubMed  Google Scholar 

  13. Grandoso G et al (2000) Two active-site tyrosyl residues of protein TrwC act sequentially at the origin of transfer during plasmid R388 conjugation. J Mol Biol 295(5):1163–1172

    Article  CAS  PubMed  Google Scholar 

  14. Street LM et al (2003) Subdomain organization and catalytic residues of the F factor TraI relaxase domain. Biochim Biophys Acta 1646(1–2):86–99

    Article  CAS  PubMed  Google Scholar 

  15. Hamilton HL, Schwartz KJ, Dillard JP (2001) Insertion-duplication mutagenesis of neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J Bacteriol 183(16):4718–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salgado-Pabon W et al (2007) A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae. Mol Microbiol 66(4):930–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pluta R et al (2017) Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance. Proc Natl Acad Sci U S A 114(32):E6526–E6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Francia MV et al (2013) Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases. Proc Natl Acad Sci U S A 110(33):13606–13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee CA, Grossman AD (2007) Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis. J Bacteriol 189(20):7254–7261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rocco JM, Churchward G (2006) The integrase of the conjugative transposon Tn916 directs strand- and sequence-specific cleavage of the origin of conjugal transfer, oriT, by the endonuclease Orf20. J Bacteriol 188(6):2207–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wright LD, Grossman AD (2016) Autonomous replication of the conjugative transposon Tn916. J Bacteriol 198(24):3355–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright LD, Johnson CM, Grossman AD (2015) Identification of a single strand origin of replication in the integrative and conjugative element ICEBs1 of Bacillus subtilis. PLoS Genet 11(10):e1005556

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carr SB, Phillips SE, Thomas CD (2016) Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication. Nucleic Acids Res 44(5):2417–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan SA (2003) DNA-protein interactions during the initiation and termination of plasmid pT181 rolling-circle replication. Prog Nucleic Acid Res Mol Biol 75:113–137

    Article  CAS  PubMed  Google Scholar 

  25. Thomas CD, Balson DF, Shaw WV (1990) In vitro studies of the initiation of staphylococcal plasmid replication. Specificity of RepD for its origin (oriD) and characterization of the rep-ori tyrosyl ester intermediate. J Biol Chem 265(10):5519–5530

    CAS  PubMed  Google Scholar 

  26. Coluzzi C et al (2017) A glimpse into the world of integrative and mobilizable elements in streptococci reveals an unexpected diversity and novel families of mobilization proteins. Front Microbiol 8:443

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abby SS et al (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guglielmini J et al (2014) Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 42(9):5715–5727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernandez-Lopez R et al (2017) Towards a taxonomy of conjugative plasmids. Curr Opin Microbiol 38:106–113

    Article  CAS  PubMed  Google Scholar 

  32. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  34. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL (2000) The Pfam protein families database. Nucleic Acids Res. 28(1):263–266. PMID: 10592242. PMCID: PMC102420. DOI: https://doi.org/10.1093/nar/28.1.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960

    Article  PubMed  Google Scholar 

  36. Ramachandran G et al (2017) Discovery of a new family of relaxases in Firmicutes bacteria. PLoS Genet 13(2):e1006586

    Article  PubMed  PubMed Central  Google Scholar 

  37. Katoh K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financed by the Spanish Ministry of Economy and Competitiveness (BFU2017-86378-P and RTC-2015-3184-1). We thank E.P.C. Rocha and the members of his team for a long-standing and fruitful collaboration. M. Pilar Garcillán-Barcia and Santiago Redondo-Salvo contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Pilar Garcillán-Barcia or Fernando de la Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garcillán-Barcia, M.P., Redondo-Salvo, S., Vielva, L., de la Cruz, F. (2020). MOBscan: Automated Annotation of MOB Relaxases. In: de la Cruz, F. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 2075. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9877-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9876-0

  • Online ISBN: 978-1-4939-9877-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics