Skip to main content

Sequencing and Assembling Genomes and Chromosomes of Cereal Crops

  • Protocol
  • First Online:
Cereal Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2072))

Abstract

Next generation sequencing (NGS) and assembly are key pieces in the success of cereal crops genomes sequencing. One interesting strategy for reducing the complexity in large genomes, the case of several cereal crops, is the sequencing of individual chromosomes. This has been done with success by flow cytometric chromosome sorting followed by sequencing using available next generation (high throughput) sequencing platforms. In this chapter, methodologies for sequencing and assembly of flow sorted chromosomes and whole genomes in cereal crops, with special emphasis on the case of the International Wheat Genome Sequencing Consortium (IWGSC), are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  2. Vrána J, Kubaláková M, Simková H et al (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041

    Article  PubMed  PubMed Central  Google Scholar 

  3. Doležel J, Vrána J, Šafář J et al (2012) Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 12:397–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. International Wheat Genome Sequencing Consortium (IWGSC), IWGSC RefSeq principal investigators, Appels R, et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  5. Cobo N, Pflüger L, Chen X et al (2018) Mapping QTL for resistance to new virulent races of wheat stripe rust from two Argentinean wheat cultivars. Crop Sci 14:1–14

    Google Scholar 

  6. Dhakal S, Tan C-T, Anderson V et al (2018) Mapping and KASP marker development for wheat curl mite resistance in “TAM 112” wheat using linkage and association analysis. Mol Breed 38:119

    Article  CAS  Google Scholar 

  7. Qureshi N, Bariana H, Kumran VV et al (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131:1091–1098

    Article  CAS  PubMed  Google Scholar 

  8. Yuan C, Wu J, Yan B et al (2018) Remapping of the stripe rust resistance gene Yr10 in common wheat. Theor Appl Genet 131:1253–1262

    Article  CAS  PubMed  Google Scholar 

  9. Mourad AMI, El-Wafaa AA, Wegulo S et al (2018) Genome-wide association study for identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat. Front Plant Sci 9:1–12

    Article  Google Scholar 

  10. Marchal C, Zhang J, Zhang P et al (2018) BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants 4:662–668

    Article  CAS  PubMed  Google Scholar 

  11. Mo Y, Vanzetti LS, Hale I et al (2018) Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet 131:2021–2035

    Article  CAS  PubMed  Google Scholar 

  12. Zhai H, Feng Z, Du X et al (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor Appl Genet 131:539–553

    Article  CAS  PubMed  Google Scholar 

  13. Würschum T, Langer SM, Longin CFH et al (2017) A modern green revolution gene for reduced height in wheat. Plant J 92:892–903

    Article  PubMed  CAS  Google Scholar 

  14. Demichelis M, Vanzetti LS, Crescente JM et al (2019) Significant effects in bread-making quality associated with the gene cluster Glu-D3/Gli-D1 from the bread wheat cultivar Prointa Guazú. Cereal Res Commun 47:111–122

    Article  CAS  Google Scholar 

  15. Alomari DZ, Eggert K, von Wirén N et al (2018) Identifying candidate genes for enhancing grain Zn concentration in wheat. Front Plant Sci e9:1313

    Article  Google Scholar 

  16. Velu G, Singh RP, Crespo-Herrera L et al (2018) Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Sci Rep 8:13526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Thind AK, Wicker T, Šimková H et al (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793

    Article  CAS  PubMed  Google Scholar 

  18. Sánchez-Martín J, Steuernagel B, Ghosh S et al (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Helguera M, Rivarola M, Clavijo B et al (2015) New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Sci 233:200–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vitulo N, Albiero A, Forcato C et al (2011) First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 6:e26421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hernandez P, Martis M, Dorado G et al (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka T, Kobayashi F, Joshi GP et al (2014) Next-generation survey sequencing and the molecular Organization of Wheat Chromosome 6B. DNA Res 21:103–114

    Article  CAS  PubMed  Google Scholar 

  23. Berkman PJ, Skarshewski A, Lorenc MT et al (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775

    Article  CAS  PubMed  Google Scholar 

  24. Berkman PJ, Skarshewski A, Manoli S et al (2012) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432

    Article  CAS  PubMed  Google Scholar 

  25. Šimková H, Svensson JT, Condamine P et al (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99:5261–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barker DL, Hansen MST, Faruqi AF et al (2004) Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res 14:901–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsunaga S, Kawano S, Michimoto T et al (1999) Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a Dioecious plant, Silene latifolia. Plant Cell Physiol 40:60–68

    Article  CAS  PubMed  Google Scholar 

  29. Vitharana SN, Wilson GS (2006) Fractionation of chromosome 15 with an affinity-based approach using magnetic beads. Genomics 87:158–164

    Article  CAS  PubMed  Google Scholar 

  30. Doležel J, Vrána J, Cápal P et al (2014) Advances in plant chromosome genomics. Biotechnol Adv 32:122–136

    Article  PubMed  CAS  Google Scholar 

  31. Heltzen M, Baker S (2019) Illumina. In: AllSeq the sequencing marketplace. http://allseq.com/knowledge-bank/sequencing-platforms/illumina/. Accessed 29 Apr 2019

  32. Plöthner M, Frank M, von der Schulenburg J-MG (2017) Cost analysis of whole genome sequencing in German clinical practice. Eur J Health Econ 18:623–633

    Article  PubMed  Google Scholar 

  33. Heltzen M, Baker S (2019) 454 Roche. In: AllSeq the sequencing marketplace. http://allseq.com/knowledge-bank/sequencing-platforms/454-roche/. Accessed 29 Apr 2019

  34. Merriman B, R&D Team IT, Rothberg JM (2012) Progress in ion torrent semiconductor chip based sequencing. Electrophoresis 33:3397–3417

    Google Scholar 

  35. Heltzen M, Baker S (2019) Ion torrent. In: AllSeq the sequencing marketplace. http://allseq.com/knowledge-bank/sequencing-platforms/ion-torrent/. Accessed 29 Apr 2019

  36. Heltzen M, Baker S (2019) SOLiD. In: AllSeq the sequencing marketplace. http://allseq.com/knowledge-bank/sequencing-platforms/solid/. Accessed 29 Apr 2019

  37. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heltzen M, Baker S (2019) Pacific biosciences. In: AllSeq the sequencing marketplace. http://allseq.com/knowledge-bank/sequencing-platforms/pacific-biosciences/. Accessed 29 Apr 2019

  39. https://nanoporetech.com/products/comparison. Accessed 29 Apr 2019

  40. Goodwin S, Gurtowski J, Ethe-Sayers S et al (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25:1750–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walker BJ, Abeel T, Shea T et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and Genome assembly improvement. PLoS One 9:e112963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz D, Li X, Hernandez L et al (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262:110–114

    Article  CAS  PubMed  Google Scholar 

  44. Tang H, Lyons E, Town CD (2015) Optical mapping in plant comparative genomics. GigaScience 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  45. Deschamps S, Zhang Y, Llaca V et al (2018) A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat Commun 9:4844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jiao Y, Peluso P, Shi J et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  48. Mayer KFX, Rogers J, Dolezel J et al (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  CAS  Google Scholar 

  49. Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schatz MC, Delcher AL, Salzberg SL (2010) Assembly of large genomes using second-generation sequencing. Genome Res 20:1165–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Akpinar BA, Biyiklioglu S, Alptekin B et al (2018) Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides. Plant Biotechnol J 16:2077–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koren S, Walenz BP, Berlin K et al (2017) Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu H, Giordano F, Ning Z (2016) Oxford Nanopore MinION sequencing and Genome assembly. Genomics Proteomics Bioinformatics 14:265–279

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ribeiro FJ, Przybylski D, Yin S et al (2012) Finished bacterial genomes from shotgun sequence data. Genome Res 22:2270–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ye C, Hill CM, Wu S et al (2016) DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci Rep 6:1–9

    Article  CAS  Google Scholar 

  59. Yu J (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  60. Du H, Yu Y, Ma Y et al (2017) Sequencing and de novo assembly of a near complete indica rice genome. Nat Commun 8:1–12

    Article  CAS  Google Scholar 

  61. Li C, Song W, Luo Y et al (2019) The HuangZaoSi maize Genome provides insights into genomic variation and improvement history of maize. Mol Plant 12:402–409

    Article  CAS  PubMed  Google Scholar 

  62. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  63. McCormick RF, Truong SK, Sreedasyam A et al (2018) The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 93:338–354

    Article  CAS  PubMed  Google Scholar 

  64. Schnable PS, Page SEEL, Pasternak S et al (2012) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  Google Scholar 

  65. International T, Genome B, Consortium S (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  66. Clavijo BJ, Venturini L, Schudoma C et al (2017) An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res 27:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Helguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Helguera, M. (2020). Sequencing and Assembling Genomes and Chromosomes of Cereal Crops. In: Vaschetto, L. (eds) Cereal Genomics. Methods in Molecular Biology, vol 2072. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9865-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9865-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9864-7

  • Online ISBN: 978-1-4939-9865-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics