Skip to main content

Quantitative Analysis of Stall of Replicating DNA Polymerase by G-Quadruplex Formation

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

The formation of guanine-quadruplexes (G4s) in genomic DNA and RNA inhibits replication, transcription, and translation. Although several regions of the human genome exhibit G4-forming potential, the stability and topology of the G4s formed vary depending on the molecular environment. Here, we describe a protocol to quantitatively analyze the inhibitory effects of G4s with different stabilities and topologies on replication in conditions of molecular crowding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bugaut A, Balasubramanian S (2012) 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 40(11):4727–4741. https://doi.org/10.1093/nar/gks068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770–780. https://doi.org/10.1038/nrg3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99(18):11593–11598. https://doi.org/10.1073/pnas.182256799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi S, Brazier JA, Sugimoto N (2017) Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. Proc Natl Acad Sci U S A 114(36):9605–9610. https://doi.org/10.1073/pnas.1704258114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tateishi-Karimata H, Kawauchi K, Sugimoto N (2018) Destabilization of DNA G-quadruplexes by chemical environment changes during tumor progression facilitates transcription. J Am Chem Soc 140(2):642–651. https://doi.org/10.1021/jacs.7b09449

    Article  CAS  PubMed  Google Scholar 

  6. Endoh T, Kawasaki Y, Sugimoto N (2013) Translational halt during elongation caused by G-quadruplex formed by mRNA. Methods 64(1):73–78. https://doi.org/10.1016/j.ymeth.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  7. Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114(5):2733–2758. https://doi.org/10.1021/cr400113m

    Article  CAS  PubMed  Google Scholar 

  8. Miyoshi D, Karimata H, Sugimoto N (2006) Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. J Am Chem Soc 128(24):7957–7963

    Article  CAS  Google Scholar 

  9. Richards EG (1975) Handbook of biochemistry and molecular biology: nucleic acids, 3rd ed. CRC Press, Cleveland, OH

    Google Scholar 

  10. Takahashi S, Sugimoto N (2017) Quantitative analysis of nucleic acid stability with ligands under high pressure to design novel drugs targeting G-Quadruplexes. Curr Protoc Nucleic Acid Chem 70:17.19.11–17.19.17. https://doi.org/10.1002/cpnc.39

    Article  Google Scholar 

  11. Tateishi-Karimata H, Nakano S, Sugimoto N (2013) Quantitative analyses of nucleic acid stability under the molecular crowding condition induced by cosolutes. Curr Protoc Nucleic Acid Chem Chapter 7:Unit7.19. https://doi.org/10.1002/0471142700.nc0719s53

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS), especially a Grant-in-Aid for Scientific Research on Innovative Areas “Chemistry for Multimolecular Crowding Biosystems” (JSPS KAKENHI Grant No. JP17H06351), JSPS foresight program, MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2014–2019), Japan, The Hirao Taro Foundation of Konan Gakuen for Academic Research, The Okazaki Kazuo Foundation of Konan Gakuen for Advanced Scientific Research, and the Chubei Itoh Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Sugimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takahashi, S., Sugimoto, N. (2019). Quantitative Analysis of Stall of Replicating DNA Polymerase by G-Quadruplex Formation. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics