Skip to main content

Microglia: The Neural Cells of Nonneural Origin

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

Microglia are neural cells of nonneural origin; they originate from fetal macrophages that invade neural tube early in embryogenesis and undergo the most idiosyncratic metamorphosis which coverts them into elements of neural circuitry. Microglia appeared early in evolution with neural immune cells being operative in leeches and mollusks. Microglial cells acquire specific morphology characterized by small cell bodies and long motile processes which are packed with receptors sensing both physiological and pathological stimuli. Microglial cells actively sculpture neuronal networks through synaptic stripping and phagocytosis of redundant neurons; microglia also secrete neuroactive factors regulating synaptic transmission. Novel techniques emerging in recent decade allowed an in-depth understanding of physiological and pathophysiological functions of microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  Google Scholar 

  2. Ginhoux F, Prinz M (2015) Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7:a020537

    Article  Google Scholar 

  3. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  Google Scholar 

  4. Brawek B, Garaschuk O (2013) Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium 53:159–169

    Article  CAS  Google Scholar 

  5. Sierra A, de Castro F, Del Rio-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H (2016) The “Big-Bang” for modern glial biology: translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64:1801–1840

    Article  Google Scholar 

  6. Frommann C (1878) Untersuchungen über die Gewebsveränderungen bei der Multiplen Sklerose des Gehirns und Rückenmarks. Verlag von Gustav Fischer, Jena

    Google Scholar 

  7. Nissl F (1899) Ueber einige Beziehungen zwischen Nervenzellerkrankungen und gliiSsen Erscheinungen bei verschiedenen Psychosen. Arch Psychiat 32:1–21

    Article  Google Scholar 

  8. Merzbacher L (1909) Untersuchungen über die Morphologie und Biologie der Abräumzellen im Zentralnervensystem. Fischer Verlag, Stuttgart

    Google Scholar 

  9. Alzheimer A (1910) Beiträge zur Kenntnis der pathologischen Neuroglia und ihrer Beziehungen zu den Abbauvorgängen im Nervengewebe. In: Histologische und Histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten, vol 3. Verlag von Gustav Fischer, Jena

    Google Scholar 

  10. Robertson WF (1900) A textbook of pathology in relation to mental diseases. William F. Clay, Edinburgh

    Google Scholar 

  11. Ramón y Cajal S (1920) Algunas consideraciones sobre la mesoglía de Robertson y Río Hortega. Trab Lab Invest Biol Univers Madrid XVIII:129–141

    Google Scholar 

  12. Penfield W (1924) Oligodendroglia and its relation to classical neuroglia. Brain 47:430–452

    Article  Google Scholar 

  13. Glees P (1955) Neuroglia morphology and function. Blackwell Scientific Publications, Oxford

    Google Scholar 

  14. Campobianco F (1901) Della participazione mesodermica nella genesi della neuoglia cerebrale. Arch It de Biol 37:152–155

    Google Scholar 

  15. Campobianco F, Fragnito O (1898) Nuovo ricerche su la genesi ed i rapporti mutui degli elementi nervosi, e neuroglici. Anm dei Neuroglia 12:36

    Google Scholar 

  16. Hatai S (1902) On the origin of neuroglia tissue from mesoblast. J Comp Neurol 12:291–296

    Article  Google Scholar 

  17. Morgese VJ, Elliott EJ, Muller KJ (1983) Microglial movement to sites of nerve lesion in the leech CNS. Brain Res 272:166–170

    Article  CAS  Google Scholar 

  18. Shafer OT, Chen A, Kumar SM, Muller KJ, Sahley CL (1998) Injury-induced expression of endothelial nitric oxide synthase by glial and microglial cells in the leech central nervous system within minutes after injury. Proc Biol Sci 265:2171–2175

    Article  CAS  Google Scholar 

  19. Schikorski D et al (2008) Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J Immunol 181:1083–1095

    Article  CAS  Google Scholar 

  20. Stewart RR (1994) Membrane properties of microglial cells isolated from the leech central nervous system. Proc Biol Sci 255:201–208

    Article  CAS  Google Scholar 

  21. Duan Y, Sahley CL, Muller KJ (2009) ATP and NO dually control migration of microglia to nerve lesions. Dev Neurobiol 69:60–72

    Article  CAS  Google Scholar 

  22. Sonetti D, Ottaviani E, Bianchi F, Rodriguez M, Stefano ML, Scharrer B, Stefano GB (1994) Microglia in invertebrate ganglia. Proc Natl Acad Sci U S A 91:9180–9184

    Article  CAS  Google Scholar 

  23. Magazine HI, Liu Y, Bilfinger TV, Fricchione GL, Stefano GB (1996) Morphine-induced conformational changes in human monocytes, granulocytes, and endothelial cells and in invertebrate immunocytes and microglia are mediated by nitric oxide. J Immunol 156:4845–4850

    CAS  PubMed  Google Scholar 

  24. Stefano GB, Liu Y, Goligorsky MS (1996) Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes. J Biol Chem 271:19238–19242

    Article  CAS  Google Scholar 

  25. Hartenstein V, Giangrande A (2018) Connecting the nervous and the immune systems in evolution. Commun Biol 1:64

    Article  Google Scholar 

  26. Hartenstein V (2011) Morphological diversity and development of glia in Drosophila. Glia 59:1237–1252

    Article  Google Scholar 

  27. Parker RJ, Auld VJ (2006) Roles of glia in the Drosophila nervous system. Semin Cell Dev Biol 17:66–77

    Article  CAS  Google Scholar 

  28. Altenhein B, Cattenoz PB, Giangrande A (2016) The early life of a fly glial cell. Wiley Interdiscip Rev Dev Biol 5:67–84

    Article  Google Scholar 

  29. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    Article  CAS  Google Scholar 

  30. Kurant E (2011) Keeping the CNS clear: glial phagocytic functions in Drosophila. Glia 59:1304–1311

    Article  Google Scholar 

  31. Reemst K, Noctor SC, Lucassen PJ, Hol EM (2016) The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci 10:566

    Article  Google Scholar 

  32. Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233

    Article  CAS  Google Scholar 

  33. Miyamoto A et al (2016) Microglia contact induces synapse formation in developing somatosensory cortex. Nat Commun 7:12540

    Article  CAS  Google Scholar 

  34. Lim SH, Park E, You B, Jung Y, Park AR, Park SG, Lee JR (2013) Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 8:e81218

    Article  Google Scholar 

  35. Chamak B, Dobbertin A, Mallat M (1995) Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience 69:177–187

    Article  CAS  Google Scholar 

  36. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77:10–18

    Article  CAS  Google Scholar 

  37. Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85:145–157

    Article  CAS  Google Scholar 

  38. Trapp BD et al (2007) Evidence for synaptic stripping by cortical microglia. Glia 55:360–368

    Article  Google Scholar 

  39. Linda H, Shupliakov O, Ornung G, Ottersen OP, Storm-Mathisen J, Risling M, Cullheim S (2000) Ultrastructural evidence for a preferential elimination of glutamate-immunoreactive synaptic terminals from spinal motoneurons after intramedullary axotomy. J Comp Neurol 425:10–23

    Article  CAS  Google Scholar 

  40. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  CAS  Google Scholar 

  41. Paolicelli RC et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  Google Scholar 

  42. Sierra A et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495

    Article  CAS  Google Scholar 

  43. Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, Yoon SY (2017) Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 22:1576–1584

    Article  CAS  Google Scholar 

  44. Paolicelli RC, Ferretti MT (2017) Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Front Synaptic Neurosci 9:9

    Article  Google Scholar 

  45. Del Rio-Hortega P (1919) El tercer elemento de los centros nerviosos. I. La microglia en estado normal. II. Intervencíon de la microglia en los procesos patológicos. III. Naturaleza probable de la microglia. Bol de la Soc esp de biol 9:69–120

    Google Scholar 

  46. Del Rio-Hortega P (1932) Microglia. In: Penfield W (ed) Cytology and cellular pathology of the nervous system, vol 2. Hoeber, New York, pp 482–534

    Google Scholar 

  47. Alzheimer A (1911) Über eigenartige Krankheitsfälle des späten Alters. Z Neurol Psychiatrie 4:356–385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Garaschuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garaschuk, O., Verkhratsky, A. (2019). Microglia: The Neural Cells of Nonneural Origin. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics