Skip to main content

Detection of Neutrophil Extracellular Traps in Urine

  • Protocol
  • First Online:
Proteus mirabilis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2021))

Abstract

Neutrophils are important mediators of the antimicrobial defense during urinary tract infections (UTIs). When activated at the site of infection, these innate immune cells phagocytose and neutralize an invading pathogen. Another neutrophil defense strategy is the release of effectors, such as antimicrobial peptides and proteins stored in neutrophil granules and reactive oxygen species. Their release can be facilitated by cellular signals that trigger chromatic decondensation and the disruption of nuclear membranes, followed by granule and plasma membrane disintegration, DNA release into the extracellular milieu, and neutrophil cell death. Neutrophil extracellular traps (NETs) form. If microbial pathogens are the cause of neutrophil infiltration, they are entrapped in the network of DNA fibers that characterize NETs and are exposed to antimicrobial granule effectors and histones that bind to the extracellular DNA fibers. Here, we describe nonmicroscopic methods applied to clinical (urine sediment) samples to identify and characterize NETs associated with UTI. A stepwise extraction procedure using PBS, deoxyribonuclease I digestion and SDS-based solubilization is described. This is followed by native gel analysis to visualize protein–DNA macromolecular assemblies and proteomic analysis to identify signature proteins and their quantities in NETs. Microbes observed to be entrapped in NETs in the process of the innate immune response to the infection are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, and Enterococcus faecalis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinkmann V (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  2. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691. https://doi.org/10.1083/jcb.201006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. https://doi.org/10.1083/jcb.200606027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30(11):513–521. https://doi.org/10.1016/j.it.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  5. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5(10):e1000639. https://doi.org/10.1371/journal.ppat.1000639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thammavongsa V, Missiakas DM, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342(6160):863–866. https://doi.org/10.1126/science.1242255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Metzler Kathleen D, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V (2014) A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 8(3):883–896. https://doi.org/10.1016/j.celrep.2014.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M (2014) Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med 20(5):511–517. https://doi.org/10.1038/nm.3547

    Article  CAS  PubMed  Google Scholar 

  9. Yu Y, Kwon K, Tsitrin T, Bekele S, Sikorski P, Nelson KE, Pieper R (2017) Characterization of early-phase neutrophil extracellular traps in urinary tract infections. PLoS Pathog 13(1):e1006151. https://doi.org/10.1371/journal.ppat.1006151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schaffer JN, Norsworthy AN, Sun T-T, Pearson MM (2016) Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation. Proc Natl Acad Sci U S A 113(16):4494–4499. https://doi.org/10.1073/pnas.1601720113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Buhr N, von Kockritz-Blickwede M (2016) How neutrophil extracellular traps become visible. J Immunol Res 2016:4604713. https://doi.org/10.1155/2016/4604713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kenny EF, Herzig A, KrĂĽger R, Muth A, Mondal S, Thompson PR, Brinkmann V, Bernuth HV, Zychlinsky A (2017) Diverse stimuli engage different neutrophil extracellular trap pathways. eLife 6:e24437. https://doi.org/10.7554/eLife.24437

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Su X, Pan P, Zhang L, Hu Y, Tan H, Wu D, Liu B, Li H, Li H, Li Y, Dai M, Li Y, Hu C, Tsung A (2016) Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci Rep 6:37252. https://doi.org/10.1038/srep37252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brinkmann V, Abu Abed U, Goosmann C, Zychlinsky A (2016) Immunodetection of NETs in paraffin-embedded tissue. Front Immunol 7(513):513. https://doi.org/10.3389/fimmu.2016.00513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu Y, Smith M, Pieper R (2014) A spinnable and automatable StageTip for high throughput peptide desalting and proteomics. Protocol Exchange. https://doi.org/10.1038/protex.2014.1033

Download references

Acknowledgments

This work was supported in part by the grant NIH-1R01GM103598 (National Institutes of Health, National Institute of General Medical Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rembert Pieper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, Y., Kwon, K., Pieper, R. (2019). Detection of Neutrophil Extracellular Traps in Urine. In: Pearson, M. (eds) Proteus mirabilis. Methods in Molecular Biology, vol 2021. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9601-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9601-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9600-1

  • Online ISBN: 978-1-4939-9601-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics