Skip to main content

Behavior Model for Assessing Decline in Executive Function During Aging and Neurodegenerative Diseases

  • Protocol
  • First Online:
Psychiatric Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2011))

Abstract

Executive dysfunction is a characteristic of several psychiatric and neurodegenerative diseases. Interestingly, executive function, which is mediated by the prefrontal cortex (PFC), commonly declines during aging. The attentional set-shifting task (AST) is commonly and extensively used to assess executive function in rodents, primates, and humans. When properly employed, this task can behaviorally assess attention, response inhibition, and cognitive flexibility. The following section uses research on age-related decline in executive function to demonstrate the methods employed and highlight areas that can confound a study if not employed properly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Downes JJ, Roberts AC, Sahakian BJ, Evenden JL, Morris RG, Robbins TW (1989) Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: evidence for a specific attentional dysfunction. Neuropsychologia 27:1329–1343

    Article  CAS  Google Scholar 

  2. Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29:993–1006

    Article  CAS  Google Scholar 

  3. Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14:2531–2544

    Article  CAS  Google Scholar 

  4. Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  CAS  Google Scholar 

  5. Barense MD, Fox MT, Baxter MG (2002) Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats. Learn Mem 9:191–201

    Article  Google Scholar 

  6. Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96

    Article  Google Scholar 

  7. Brown VJ, Tait DS (2016) Attentional set-shifting across species. Curr Top Behav Neurosci 28:363–395

    Article  CAS  Google Scholar 

  8. McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  Google Scholar 

  9. Block AE, Dhanji H, Thompson-Tardif SF, Floresco SB (2007) Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting. Cereb Cortex 17:1625–1636

    Article  Google Scholar 

  10. Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol Learn Mem 89:567–573

    Article  Google Scholar 

  11. Newman LA, McGaughy J (2011) Attentional effects of lesions to the anterior cingulate cortex: how prior reinforcement influences distractibility. Behav Neurosci 125:360–371

    Article  Google Scholar 

  12. Chase EA, Tait DS, Brown VJ (2012) Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats. Eur J Neurosci 36:2368–2375

    Article  Google Scholar 

  13. Lindgren HS, Wickens R, Tait DS, Brown VJ, Dunnett SB (2013) Lesions of the dorsomedial striatum impair formation of attentional set in rats. Neuropharmacology 71:148–153

    Article  CAS  Google Scholar 

  14. Wright NF, Vann SD, Aggleton JP, Nelson AJ (2015) A critical role for the anterior thalamus in directing attention to task-relevant stimuli. J Neurosci 35:5480–5488

    Article  CAS  Google Scholar 

  15. Tait DS, Phillips JM, Blackwell AD, Brown VJ (2017) Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat. Neuroscience 345:287–296

    Article  CAS  Google Scholar 

  16. Egerton A, Reid L, McKerchar CE, Morris BJ, Pratt JA (2005) Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psychopharmacology 179:77–84

    Article  CAS  Google Scholar 

  17. Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31:297–309

    Article  CAS  Google Scholar 

  18. Tait DS, Brown VJ, Farovik A, Theobald DE, Dalley JW, Robbins TW (2007) Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. Eur J Neurosci 25:3719–3724

    Article  Google Scholar 

  19. McGaughy J, Ross RS, Eichenbaum H (2008) Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience 153:63–71

    Article  CAS  Google Scholar 

  20. Tait DS, Brown VJ (2008) Lesions of the basal forebrain impair reversal learning but not shifting of attentional set in rats. Behav Brain Res 187:100–108

    Article  CAS  Google Scholar 

  21. Parikh V, Naughton SX, Yegla B, Guzman DM (2016) Impact of partial dopamine depletion on cognitive flexibility in BDNF heterozygous mice. Psychopharmacology 233:1361–1375

    Article  CAS  Google Scholar 

  22. Beas BS, McQuail JA, Ban Uelos C, Setlow B, Bizon JL (2017) Prefrontal cortical GABAergic signaling and impaired behavioral flexibility in aged F344 rats. Neuroscience 345:274–286

    Article  CAS  Google Scholar 

  23. Babcock RL, Salthouse TA (1990) Effects of increased processing demands on age differences in working memory. Psychol Aging 5:421–428

    Article  CAS  Google Scholar 

  24. Robbins TW, James M, Owen AM, Sahakian BJ, Lawrence AD, McInnes L, Rabbitt PM (1998) A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery. J Int Neuropsychol Soc 4:474–490

    Article  CAS  Google Scholar 

  25. Fortenbaugh FC, DeGutis J, Germine L, Wilmer JB, Grosso M, Russo K, Esterman M (2015) Sustained attention across the life span in a sample of 10,000: dissociating ability and strategy. Psychol Sci 26:1497–1510

    Article  Google Scholar 

  26. Rhodes MG (2004) Age-related differences in performance on the Wisconsin card sorting test: a meta-analytic review. Psychol Aging 19:482–494

    Article  Google Scholar 

  27. Picq JL (2007) Aging affects executive functions and memory in mouse lemur primates. Exp Gerontol 42:223–232

    Article  Google Scholar 

  28. Wallace J, Marston HM, McQuade R, Gartside SE (2014) Evidence that the attentional set shifting test in rats can be applied in repeated testing paradigms. J Psychopharmacol 28:691–696

    Article  CAS  Google Scholar 

  29. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    Article  CAS  Google Scholar 

  30. Ando S, Ohashi Y (1991) Longitudinal study on age-related changes of working and reference memory in the rat. Neurosci Lett 128:17–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by National Institute of Aging grants R37AG036800, R01049711, R01052258, and R01037984 and the Evelyn F. McKnight Brain Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yegla, B., Foster, T.C., Kumar, A. (2019). Behavior Model for Assessing Decline in Executive Function During Aging and Neurodegenerative Diseases. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 2011. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9554-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9554-7_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9553-0

  • Online ISBN: 978-1-4939-9554-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics