Skip to main content

Sampling Adult Populations of Anopheles Mosquitoes

  • Protocol
  • First Online:
Malaria Control and Elimination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2013))

Abstract

For the control and elimination of malaria, information on the local vector dynamics is essential. This information provides guidance on appropriate and timely deployment of vector control tools and their subsequent success. The data on the dynamics of local mosquito populations can be collected using many different Anopheles sampling methods. Dependent on the objectives, resources, time, and local environment, different traps and methods can be chosen. This chapter describes the sampling of adult populations, focusing on the important preparatory stages and some of the widely used sampling methods. The trapping methods discussed in this chapterĀ are the human landing catch, human-baited net trap, animal landing catch, animal-baited net trap, CDC miniature light trap, Biogents Suna trap, peripheral net collection, pyrethrum collection, exit/entry trap, and resting shelter. For optimal deployment in the field, a step-by-step description of the sampling methods is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DL, Dushoff J, Snow RW et al (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438:492ā€“495

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Hay SI, Smith DL, Snow RW (2008) Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 8:369ā€“378

    ArticleĀ  Google ScholarĀ 

  3. Smith T, Killeen G, Lengeler C et al (2004) Relationships between the outcome of Plasmodium falciparum infection and the intensity of transmission in Africa. Am J Trop Med Hyg 71:80ā€“86

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Killeen GF, Ross A, Smith T (2006) Infectiousness of malaria-endemic human populations to vectors. Am J Trop Med Hyg 75:38ā€“45

    ArticleĀ  Google ScholarĀ 

  5. Reddy M, Overgaard H, Abaga S et al (2011) Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 10:184

    ArticleĀ  Google ScholarĀ 

  6. Russell TL, Beebe NW, Cooper RD et al (2013) Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 12:56

    ArticleĀ  Google ScholarĀ 

  7. Moiroux N, Gomez MB, Pennetier C et al (2012) Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206:1622ā€“1629

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Sougoufara S, DiƩdhiou SM, DoucourƩ S et al (2014) Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J 13:125

    ArticleĀ  Google ScholarĀ 

  9. DabirƩ RK, Namountougou M, Sawadogo SP et al (2012) Population dynamics of Anopheles gambiae s.L. in Bobo-Dioulasso city: bionomics, infection rate and susceptibility to insecticides. Parasit Vectors 5:127

    ArticleĀ  Google ScholarĀ 

  10. Lwetoijera DW, Harris C, Kiware SS et al (2014) Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 13:331

    ArticleĀ  Google ScholarĀ 

  11. Githeko A, Adungo N, Karanja D et al (1996) Some observations on the biting behavior of Anopheles gambiae s.S., Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp Parasitol 82:306ā€“315

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Gryseels C, Durnez L, Gerrets R et al (2015) Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia. Malar J 14:165

    ArticleĀ  Google ScholarĀ 

  13. Killeen G (2014) Characterizing, controlling and eliminating residual malaria transmission. Malar J 13:330

    ArticleĀ  Google ScholarĀ 

  14. Ngā€™habi KR (2010) Behavioural, ecological and genetic determinants of mating and gene flow in Africa malaria mosquitoes. PhD Thesis, Wageningen University

    Google ScholarĀ 

  15. Ndiath MO, Mazenot C, Gaye A et al (2011) Methods to collect Anopheles mosquitoes and evaluate malaria transmission: a comparative study in two villages in Senegal. Malar J 10:270

    ArticleĀ  Google ScholarĀ 

  16. Molineaux L, Gramiccia G (1980) The Garki project: research on the epidemiology and control of malaria in the Sudan savanna of West Africa. World Health Organization, Geneva

    Google ScholarĀ 

  17. Fontenille D, Lochouarn L, Diagne N et al (1997) High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56:247ā€“253

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Fontenille D, Lochouarn L, Diatta M et al (1997) Four yearsā€™ entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis. Trans R Soc Trop Med Hyg 91:647ā€“652

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Watson M (1921) The prevention of malaria in the federated Malay states, a record of 20 years progress. E.P. Dutton and company, New York

    Google ScholarĀ 

  20. Gater BAR (1935) Aids to the identification of anopheline imagines in Malaya. Goverment of the Straits Settlement and the Malaria Advisory Board, Federated Malay states, Singapore

    Google ScholarĀ 

  21. Zwiebel LJ, Takken W (2004) Olfactory regulation of mosquitoā€“host interactions. Insect Biochem Mol Biol 34:645ā€“652

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Gimnig JE, Walker ED, Otieno P et al (2013) Incidence of malaria among mosquito collectors conducting human landing catches in western Kenya. Am J Trop Med Hyg 88:301ā€“308

    ArticleĀ  Google ScholarĀ 

  23. Chen H-L, Chang J-K, Tang R-B (2015) Current recommendations for the Japanese encephalitis vaccine. J Chin Med Assoc 78:271ā€“275

    ArticleĀ  Google ScholarĀ 

  24. Imwong M, Hien TT, Thuy-Nhien NT et al (2017) Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis 17:1022ā€“1023

    ArticleĀ  Google ScholarĀ 

  25. Ashley EA, Dhorda M, Fairhurst RM et al (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411ā€“423

    ArticleĀ  Google ScholarĀ 

  26. Le Goff G, Carnevale P, Fondjo E et al (1997) Comparison of three sampling methods of man-biting anophelines in order to estimate the malaria transmission in a village of South Cameroon. Parasite 4:75ā€“80

    ArticleĀ  Google ScholarĀ 

  27. Seng CM, Matusop A, Sen FK (1999) Differences in Anopheles composition and malaria transmission in the village settlements and cultivated farming zone in Sarawak, Malaysia. Southeast Asian J Trop Med Public Health 30:454ā€“459

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Rubio-Palis Y, Curtis CF (1992) Evaluation of different methods of catching anopheline mosquitoes in western Venezuela. J Am Mosq Control Assoc 8:261ā€“267

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Service MW (1977) A critical review of procedures for sampling populations of adult mosquitoes. Bull Entomol Res 67:343ā€“382

    ArticleĀ  Google ScholarĀ 

  30. World Health Organization (1975) Methods and techniques. Manual on practical entomology in malaria. WHO, Geneva

    Google ScholarĀ 

  31. Hamon J (1964) Observations sur lā€™emploi des moustiquaires-pieges pour la capture semi-automatique des moustiques. Bull Soc Pathol Exot 57:576ā€“588

    CASĀ  Google ScholarĀ 

  32. Tangena J-AA, Thammavong P, Hiscox A et al (2015) The human-baited double net trap: an alternative to human landing catches for collecting outdoor biting mosquitoes in Lao PDR. PLoS One 10:e0138735

    ArticleĀ  Google ScholarĀ 

  33. Chaki PP, Mlacha YP, Msellem D et al (2012) An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns. Malar J 11:172

    ArticleĀ  Google ScholarĀ 

  34. Singh N, Mishra AK (1997) Efficacy of light-traps in sampling malaria vectors in different ecological zones in Central India. Southeast Asian J Trop Med Public Health 28:196ā€“202

    CASĀ  PubMedĀ  Google ScholarĀ 

  35. Kilama M, Smith DL, Hutchinson R et al (2014) Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J 13:111

    ArticleĀ  Google ScholarĀ 

  36. Lines JD, Curtis CF, Wilkes TJ et al (1991) Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res 81:77ā€“84

    ArticleĀ  Google ScholarĀ 

  37. McDermott EG, Mullens BA (2017) The dark side of light traps. J Med Entomol 55:251ā€“261

    ArticleĀ  Google ScholarĀ 

  38. Hiscox A, Otieno B, Kibet A et al (2014) Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar J 13:257

    ArticleĀ  Google ScholarĀ 

  39. Homan T, Hiscox A, Mweresa CK et al (2016) The effect of mass mosquito trapping on malaria transmission and disease burden (SolarMal): a stepped-wedge cluster-randomised trial. Lancet 388:1193ā€“1201

    ArticleĀ  Google ScholarĀ 

  40. Hiscox A, Maire N, Kiche I et al (2012) The SolarMal project: innovative mosquito trapping technology for malaria control. Malar J 11:O45

    ArticleĀ  Google ScholarĀ 

  41. Burkot TR, Russell TL, Reimer LJ et al (2013) Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J 12:49

    ArticleĀ  Google ScholarĀ 

  42. Marcombe S, Bobichon J, Somphong B et al (2017) Insecticide resistance status of malaria vectors in Lao PDR. PLoS One 12:e0175984

    ArticleĀ  Google ScholarĀ 

  43. World Health Organization (2013) Malaria entomology and vector control. Guide for participants. WHO, Geneva

    Google ScholarĀ 

  44. Harbison JE, Mathenge EM, Misiani GO et al (2006) A simple method for sampling indoor-resting malaria mosquitoes Anopheles gambiae and Anopheles funestus (Diptera: Culicidae) in Africa. J Med Entomol 43:473ā€“479

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Govella NJ, Chaki PP, Mpangile JM et al (2011) Monitoring mosquitoes in urban Dar Es Salaam: evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches. Parasit Vectors 4:40

    ArticleĀ  Google ScholarĀ 

  46. Silver JB (2008) Field sampling methods. Mosquito ecology, 3rd edn. Springer, Dordrecht

    BookĀ  Google ScholarĀ 

  47. Muirhead-Thomson RC (1958) A pit shelter for sampling outdoor mosquito populations. Bull World Health Organ 19:1116ā€“1118

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Kweka EJ, Mwangā€™onde BJ, Kimaro E et al (2009) A resting box for outdoor sampling of adult Anopheles arabiensis in rice irrigation schemes of lower Moshi, northern Tanzania. Malar J 8:82

    ArticleĀ  Google ScholarĀ 

  49. Service MW (1993) Mosquito ecology. Field sampling methods. Elsevier Applied Science, London

    BookĀ  Google ScholarĀ 

  50. Odiere M, Bayoh MN, Gimnig J et al (2007) Sampling outdoor, resting Anopheles gambiae and other mosquitoes (Diptera: Culicidae) in Western Kenya with clay pots. J Med Entomol 44:14ā€“22

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Sikaala CH, Killeen GF, Chanda J et al (2013) Evaluation of alternative mosquito sampling methods for malaria vectors in lowland south - East Zambia. Parasit Vectors 6:91

    ArticleĀ  Google ScholarĀ 

  52. Rosner B (2010) Chapter 8 hypothesis testing: two-sample inference. In: Fundamentals for biostatistics. 7th edn

    Google ScholarĀ 

  53. Detinova TS (1945) Determination of the physiological age of female Anopheles from the changes of the tracheal system of the ovaries. Med Parazitol (Mosk) 14:45ā€“49

    CASĀ  Google ScholarĀ 

  54. World Health Organization (2016) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd edn. The WHO susceptibility test for adult mosquitoes, Geneva

    Google ScholarĀ 

  55. Cooper RD, Frances SP, Popat S et al (2004) The effectiveness of light, 1-octen-3-ol, and carbon dioxide as attractants for anopheline mosquitoes in Madang Province, Papua New Guinea. J Am Mosq Control Assoc 20:239ā€“242

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. Barr AR, Smith TA, Boreham MM et al (1963) Evaluation of some factors affecting the efficiency of light traps in collecting mosquitoes. J Econ Entomol 56:123ā€“127

    ArticleĀ  Google ScholarĀ 

  57. Gillies MT (1970) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull Ent Res 70:525ā€“532

    ArticleĀ  Google ScholarĀ 

  58. Smallegange RC, Schmied WH, van Roey KJ et al (2010) Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J 9:292

    ArticleĀ  Google ScholarĀ 

  59. Mweresa C, Omusula P, Otieno B et al (2014) Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J 13:160

    ArticleĀ  Google ScholarĀ 

  60. van Loon JJA, Smallegange RC, BukovinszkinĆ©-Kiss G et al (2015) Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol 41:567ā€“573

    ArticleĀ  Google ScholarĀ 

  61. Mburu MM, Mweresa CK, Omusula P et al (2017) 2-butanone as a carbon dioxide mimic in attractant blends for the Afrotropical malaria mosquitoes Anopheles gambiae and Anopheles funestus. Malar J 16:351

    ArticleĀ  Google ScholarĀ 

  62. Smallegange RC, Knols BG, Takken W (2010) Effectiveness of synthetic versus natural human volatiles as attractants for Anopheles gambiae (Diptera: Culicidae) sensu stricto. J Med Entomol 47:338ā€“344

    PubMedĀ  Google ScholarĀ 

  63. Schmied WH, Takken W, Killeen GF et al (2008) Evaluation of two counterflow traps for testing behaviour-mediating compounds for the malaria vector Anopheles gambiae s.S. Under semi-field conditions in Tanzania. Malar J 7:230

    ArticleĀ  Google ScholarĀ 

  64. Njiru BN, Mukabana WR, Takken W et al (2006) Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J 5:39

    ArticleĀ  Google ScholarĀ 

  65. Logan JG, Birkett MA (2007) Semiochemicals for biting fly control: their identification and exploitation. Pest Manag Sci 63:647ā€“657

    ArticleĀ  CASĀ  Google ScholarĀ 

  66. Acree F, Turner RB, Gouck HK et al (1968) L-lactic acid: a mosquito attractant isolated from humans. Science 161:1346ā€“1347

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Braks MAH, Meijerink J, Takken W (2001) The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and l-lactic acid, in an olfactometer. Physiol Entomol 26:142ā€“148

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. Okumu FO, Killeen GF, Ogoma S et al (2010) Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS One 5:e8951

    ArticleĀ  Google ScholarĀ 

  69. Mukabana WR, Mweresa CK, Otieno B et al (2012) A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol 38:235ā€“244

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Odetoyinbo JA (1969) Preliminary investigation on the use of a light-trap for sampling malaria vectors in the Gambia. Bull World Health Organ 40:547ā€“560

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Mboera LE, Kihonda J, Braks MA et al (1998) Influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg 59:595ā€“596

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Verhulst NO, Bakker JW, Hiscox A (2015) Modification of the suna trap for improved survival and quality of mosquitoes in support of epidemiological studies. J Am Mosq Control Assoc 31:223ā€“232

    ArticleĀ  Google ScholarĀ 

  73. Williams J, Pinto J (2012) Training manual on malaria entomology, for entomology and vector control technicians (basic level). United States Agency for International Development, Washington, DC

    Google ScholarĀ 

  74. Microsoft (2015) Project premonition https://www.microsoft.com/en-us/research/project/project-premonition/. Accessed 22 Dec 2017

  75. Biogents (2016) BG-counter: remote mosquito monitoring. https://www.bg-counter.com/. Accessed 24 Dec 2017

  76. Menger D, Otieno B, de Rijk M et al (2014) A push-pull system to reduce house entry of malaria mosquitoes. Malar J 13:119

    ArticleĀ  Google ScholarĀ 

  77. Kydonieus AF, Beroza M (1982) Insect suppression with controlled release pheromone systems, vol 1. Pheromones and their use. RC Press, Boca Raton, FL

    Google ScholarĀ 

  78. Poulin B, Lefebvre G, Muranyi-Kovacs C et al (2017) Mosquito traps: an innovative, environmentally friendly technique to control mosquitoes. Int J Environ Res Public Health 14:313

    ArticleĀ  Google ScholarĀ 

  79. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375ā€“400

    ArticleĀ  CASĀ  Google ScholarĀ 

  80. Tangena J-AA, Thammavong P, Malaithong N et al (2017) Diversity of mosquitoes (Diptera: Culicidae) attracted to human subjects in rubber plantations, secondary forests, and villages in Luang Prabang province, northern Lao PDR. J Med Entomol 54:1589ā€“1604

    ArticleĀ  Google ScholarĀ 

  81. Pombi M, Guelbeogo WM, Kreppel K et al (2014) The sticky resting box, a new tool for studying resting behaviour of Afrotropical malaria vectors. Parasit Vectors 7:247

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

This work was supported by the Yersin project, funded by the Michelin Corporate Foundation. AH was supported by a grant from the Innovative Vector Control Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Brey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tangena, JA.A., Hiscox, A., Brey, P.T. (2019). Sampling Adult Populations of Anopheles Mosquitoes. In: Ariey, F., Gay, F., MĆ©nard, R. (eds) Malaria Control and Elimination. Methods in Molecular Biology, vol 2013. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9550-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9550-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9549-3

  • Online ISBN: 978-1-4939-9550-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics