Skip to main content

Development of Blood Stage Malaria Vaccines

  • Protocol
  • First Online:
Malaria Control and Elimination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2013))

Abstract

The blood stage of the malaria parasite life cycle is responsible for all the clinical symptoms of malaria. During the blood stage, Plasmodium merozoites invade and multiply within host red blood cells (RBCs). Here, we review the progress made, challenges faced, and new strategies available for the development of blood stage malaria vaccines. We discuss our current understanding of immune responses against blood stages and the status of clinical development of various blood stage malaria vaccine candidates. We then discuss possible paths forward to develop effective blood stage malaria vaccines. This includes a discussion of protective immune mechanisms that can be elicited to target blood stage parasites, novel delivery systems, immunoassays and animal models to optimize vaccine candidates in preclinical studies, and use of challenge models to get an early readout of vaccine efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2016) World malaria report 2016. WHO, Geneva

    Google Scholar 

  2. WHO (2017) World malaria report 2017. WHO, Geneva

    Google Scholar 

  3. Mueller I, Galinski MR, Baird JK et al (2009) Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 9:555–566

    Article  CAS  PubMed  Google Scholar 

  4. Riley EM, Stewart VA (2013) Immune mechanisms in malaria: new insights in vaccine development. Nat Med 19:168–178

    Article  CAS  PubMed  Google Scholar 

  5. Cohen S, McGregor IA, Carrington S (1961) Gamma-globulin and acquired immunity to human malaria. Nature 192:733–737

    Article  CAS  PubMed  Google Scholar 

  6. McGregor IA (1964) The passive transfer of human malarial immunity. Am J Trop Med Hyg 13:237–239

    Article  Google Scholar 

  7. Holder AA, Freeman RR (1984) The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J Exp Med 160:624–629

    Article  CAS  PubMed  Google Scholar 

  8. Deans JA, Alderson T, Thomas AW et al (1982) Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clin Exp Immunol 49:297–309

    CAS  PubMed  PubMed Central  Google Scholar 

  9. John CC, O’Donnell RA, Sumba PO et al (2004) Evidence that invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein-1 (MSP-1 19) can play a protective role against blood-stage Plasmodium falciparum infection in individuals in a malaria endemic area of Africa. J Immunol 173:666–672

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy MC, Wang J, Zhang Y et al (2002) In vitro studies with recombinant Plasmodium falciparum apical membrane antigen 1 (AMA1): production and activity of an AMA1 vaccine and generation of a multiallelic response. Infect Immun 70:6948–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopaticki S, Maier AG, Thompson J et al (2011) Reticulocyte and erythrocyte binding- like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 79:1107–1117

    Article  CAS  PubMed  Google Scholar 

  12. Baum J, Chen L, Healer J et al (2009) Reticulocyte-binding protein homologue 5 – an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int J Parasitol 39:371–380

    Article  CAS  PubMed  Google Scholar 

  13. Douglas AD, Baldeviano GC, Lucas CM et al (2015) A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys. Cell Host Microbe 17:130–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nebie I, Diarra A, Ouedraogo A et al (2008) Humoral responses to Plasmodium falciparum blood-stage antigens and association with incidence of clinical malaria in children living in an area of seasonal malaria transmission in Burkina Faso, West Africa. Infect Immun 76:759–766

    Article  CAS  PubMed  Google Scholar 

  15. Richards JS, Arumugam TU, Reiling L et al (2013) Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J Immunol 191:795–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. França CT, White MT, He W-Q et al (2017) Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. Elife 6:e28673

    Article  PubMed  PubMed Central  Google Scholar 

  17. Osier FH, Feng G, Boyle MJ et al (2014) Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med 12:108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Daou M, Kouriba B, Ouédraogo N et al (2015) Protection of Malian children from clinical malaria is associated with recognition of multiple antigens. Malar J 14:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bustamante LY, Powell GT, Lin Y-C et al (2017) Synergistic malaria vaccine combinations identified by systematic antigen screening. Proc Natl Acad Sci U S A 114:12045–12050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patel SD, Ahouidi AD, Bei AK et al (2013) Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. J Infect Dis 208:1679–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tran TM, Ongoiba A, Coursen J et al (2014) Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. J Infect Dis 209:789–798

    Article  CAS  PubMed  Google Scholar 

  22. Weaver R, Reiling L, Feng G et al (2016) The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Sci Rep 6:33094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pandey AK, Reddy KS, Sahar T et al (2013) Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending parasite-neutralizing antibodies. Infect Immun 81:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. King CL, Michon P, Shakri AR et al (2008) Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. Proc Natl Acad Sci U S A 105:8363–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Irani V, Ramsland PA, Guy AJ et al (2015) Acquisition of functional antibodies that block the binding of erythrocyte-binding antigen 175 and protection against Plasmodium falciparum malaria in children. Clin Infect Dis 61:1244–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyle MJ, Reiling L, Feng G et al (2015) Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42:580–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan JA, Fowkes FJI, Beeson JG (2014) Surface antigens of Plasmodium falciparum- infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 71:3633–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Druilhe P, Spertini F, Soesoe D et al (2005) A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Med 2:e344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Roestenberg M, McCall M, Hopman J et al (2009) Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 361:468–477

    Article  CAS  PubMed  Google Scholar 

  30. Pombo DJ, Lawrence G, Hirunpetcharat C et al (2002) Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360:610–617

    Article  PubMed  Google Scholar 

  31. Blackman MJ, Whittle H, Holder AA (1991) Processing of the Plasmodium falciparum major merozoite surface protein-1: identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Mol Biochem Parasitol 49:35–44

    Article  CAS  PubMed  Google Scholar 

  32. Harris PK, Yeoh S, Dluzewski AR et al (2005) Molecular identification of a malaria merozoite surface sheddase. PLoS Pathog 1:e29

    Article  PubMed Central  CAS  Google Scholar 

  33. Singh S, Miura K, Zhou H et al (2006) Immunity to recombinant Plasmodium falciparum merozoite surface protein 1 (MSP1): protection in Aotus nancymai monkeys strongly correlates with anti-MSP1 antibody titer and in vitro parasite-inhibitory activity. Infect Immun 74:4573–4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malkin E, Long CA, Stowers AW et al (2007) Phase 1 study of two merozoite surface protein 1 (MSP1(42)) vaccines for Plasmodium falciparum malaria. PLoS Clin Trial 2:e12

    Article  CAS  Google Scholar 

  35. Ogutu BR, Apollo OJ, McKinney D et al (2009) Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in western Kenya. PLoS One 4:e4708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Thera MA, Doumbo OK, Coulibaly D et al (2006) Safety and allele-specific immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized trial. PLoS Clin Trial 1:e34

    Article  CAS  Google Scholar 

  37. Alaro JR, Partridge A, Miura K et al (2013) A chimeric Plasmodium falciparum merozoite surface protein vaccine induces high titers of parasite growth inhibitory antibodies. Infect Immun 81:3843–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burns JM, Miura K, Sullivan J et al (2016) Immunogenicity of a chimeric Plasmodium falciparum merozoite surface protein vaccine in Aotus monkeys. Malar J 15:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Douglas AD, de Cassan SC, Dicks MD et al (2010) Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1. Vaccine 28:7167–7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parween S, Gupta PK, Chauhan VS (2011) Induction of humoral immune response against PfMSP-119 and PvMSP-119 using gold nanoparticles along with alum. Vaccine 29:2451–2460

    Article  CAS  PubMed  Google Scholar 

  41. Triglia T, Healer J, Caruana SR et al (2000) Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol 38:706–718

    Article  CAS  PubMed  Google Scholar 

  42. Bannister LH, Hopkins JM, Dluzewski AR et al (2003) Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J Cell Sci 116:3825–3834

    Article  CAS  PubMed  Google Scholar 

  43. Dutta S, Haynes JD, Moch JK et al (2003) Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proc Natl Acad Sci U S A 100:12295–12300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kariuki S, Nahlen BL, Kolczack M et al (2001) Longitudinal study of natural immune responses to the Plasmodium falciparum apical membrane antigen (AMA-1) in a holoendemic region of malaria in western Kenya: Asembo Bay Cohort Project VIII. Am J Trop Med Hyg 65:100–107

    Article  PubMed  Google Scholar 

  45. Miura K, Zhou H, Muratova OV et al (2007) In immunization with Plasmodium falciparum apical membrane antigen 1, the specificity of antibodies depends on the species immunized. Infect Immun 75:5827–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Remarque EJ, Roestenberg M, Younis S et al (2012) Humoral immune responses to a single allele PfAMA1 vaccine in healthy malaria-naive adults. PLoS One 7:e38898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ouattara A, Mu J, Takala-Harrison S et al (2010) Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine. Malar J 9:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Thera MA, Doumbo OK, Coulibaly D et al (2011) A field trial to assess a blood-stage malaria vaccine. N Engl J Med 365:1004–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sheehy SH, Duncan CJ, Elias SC et al (2012) ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol Ther 20:2355–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sirima SB, Durier C, Kara L et al (2017) Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1-DiCo malaria vaccine adjuvanted with GLA-SE or Alhydrogel® in European and African adults: a phase 1a/1b, randomized, double-blind multi-center trial. Vaccine 35:6218–6227

    Article  CAS  PubMed  Google Scholar 

  51. Srinivasan P, Beatty WL, Diouf A et al (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 108:13275–13280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Srinivasan P, Ekanem E, Diouf A et al (2014) Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proc Natl Acad Sci U S A 111:10311–10316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srinivasan P, Baldeviano GC, Miura K et al (2017) A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. NPJ Vacc 2:14

    Article  Google Scholar 

  54. Crosnier C, Bustamante LY, Bartholdson SJ et al (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wright KE, Hjerrild KA, Bartlett J et al (2014) Structure of malaria invasion protein PfRH5 with erythrocyte basigin and blocking antibodies. Nature 515:427–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen L, Xu Y, Healer J et al (2014) Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. Elife 3:e04187

    Article  PubMed Central  Google Scholar 

  57. Chiu CY, Healer J, Thompson JK et al (2014) Association of antibodies to Plasmodium falciparum reticulocyte binding protein homolog 5 with protection from clinical malaria. Front Microbiol 5:314

    Article  PubMed  PubMed Central  Google Scholar 

  58. Reddy KS, Amlabu E, Pandey AK et al (2015) Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proc Natl Acad Sci U S A 112:1179–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Volz JC, Yap A, Sisquella X et al (2016) Essential role of the PfRh5/PfRipr/CyRPA complex during Plasmodium falciparum invasion of erythrocytes. Cell Host Microbe 20:60–71

    Article  CAS  PubMed  Google Scholar 

  60. Galaway F, Drought LG, Fala M et al (2017) P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. Nat Commun 8:14333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Favuzza P, Blaser S, Dreyer AM et al (2016) Generation of Plasmodium falciparum parasite-inhibitory antibodies by immunization with recombinantly-expressed CyRPA. Malar J 15:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ntege EH, Arisue N, Ito D et al (2016) Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. Vaccine 34:5612–5622

    Article  CAS  PubMed  Google Scholar 

  63. Payne RO, Silk SE, Elias SC et al (2017) Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight 2:e96381

    Article  PubMed Central  Google Scholar 

  64. Aoki S, Li J, Itagaki S et al (2002) Serine repeat antigen (SERA5) is predominantly expressed among the SERA multigene family of Plasmodium falciparum, and the acquired antibody titers correlate with serum inhibition of the parasite growth. J Biol Chem 277:47533–47540

    Article  CAS  PubMed  Google Scholar 

  65. McCoubrie JE, Miller SK, Sargeant T et al (2007) Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun 75:5565–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Apio Okech B, Nalunkuma A, Okello D et al (2001) Natural human immunoglobulin G subclass responses to Plasmodium falciparum Serine Repeat Antigen in Uganda. Am J Trop Med Hyg 65:912–917

    Article  Google Scholar 

  67. Yagi M, Bang G, Tougan T et al (2014) Protective epitopes of the Plasmodium falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal repetitive sequences. PLoS One 9:e98460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Horii T, Shirai H, Jie L et al (2010) Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36. Parasitol Int 59:380–386

    Article  CAS  PubMed  Google Scholar 

  69. Palacpac NMQ, Ntege E, Yeka A et al (2013) Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36. PLoS One 8:e64073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oeuvray C, Theisen M, Rogier C et al (2000) Cytophilic immunoglobulin responses to Plasmodium falciparum glutamate-rich protein are correlated with protection against clinical malaria in Dielmo, Senegal. Infect Immun 68:2617–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kana IH, Adu B, Tiendrebeogo RW et al (2017) Naturally acquired antibodies target the glutamate-rich protein on intact merozoites and predict protection against febrile malaria. J Infect Dis 215:623–630

    Article  CAS  PubMed  Google Scholar 

  72. Soe S, Theisen M, Roussilhon C et al (2004) Association between protection against clinical malaria and antibodies to merozoite surface antigens in an area of hyperendemicity in Myanmar: complementarity between responses to merozoite surface protein 3 and the 220-kilodalton glutamate-rich protein. Infect Immun 72:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amoah LE, Nuvor SV, Obboh EK et al (2017) Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the Central Region of Ghana. Parasit Vectors 10:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carvalho LJ, Alves FA, Bianco C et al (2005) Immunization of Saimiri sciureus monkeys with a recombinant hybrid protein derived from the Plasmodium falciparum antigen glutamate-rich protein and merozoite surface protein 3 can induce partial protection with Freund and Montanide ISA720 adjuvants. Clin Diagn Lab Immunol 12:242–248

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Theisen M, Soe S, Oeuvray C et al (1998) The glutamate-rich protein (GLURP) of Plasmodium falciparum is a target for antibody-dependent monocyte-mediated inhibition of parasite growth in vitro. Infect Immun 66:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oeuvray C, Bouharoun-Tayoun H, Gras-Masse H et al (1994) Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. Blood 84:1594–1602

    Article  CAS  PubMed  Google Scholar 

  77. Sirima SB, Mordmüller B, Milligan P et al (2016) A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine 34:4536–4542

    Article  CAS  PubMed  Google Scholar 

  78. Chitnis CE, Miller LH (1994) Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med 180:497–506

    Article  CAS  PubMed  Google Scholar 

  79. Singh SK, Hora R, Belrhali H et al (2006) Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain. Nature 439:741–744

    Article  CAS  PubMed  Google Scholar 

  80. VanBuskirk KM, Sevova E, Adams JH (2004) Conserved residues in the Plasmodium vivax Duffy binding protein ligand domain are critical for erythrocyte receptor recognition. Proc Natl Acad Sci U S A 101(44):15754–15759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hans D, Pattnaik P, Bhattacharyya A et al (2005) Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion. Mol Microbiol 55:1423–1434

    Article  CAS  PubMed  Google Scholar 

  82. de Cassan SC, Shakri AR, Llewellyn D et al (2015) Preclinical assessment of viral vectored and protein vaccines targeting the duffy-binding protein region II of Plasmodium vivax. Front Immunol 6:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wiley SR, Raman VS, Desbien A et al (2011) Targeting TLRs expands the antibody repertoire in response to a malaria vaccine. Sci Transl Med 3:93ra69

    Article  CAS  PubMed  Google Scholar 

  84. Payne RO, Silk SE, Elias SC et al (2017) Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies. JCI Insight 2:e93683

    Article  PubMed Central  Google Scholar 

  85. Singh K, Mukherjee P, Shakri AR et al (2018). A malaria vaccine candidate based on Duffy binding protein elicits high titer strain transcending functional antibodies in a Phase I clinical trial. NPJ Vaccines. 3:48. doi: 10.1038/s41541-018-0083-3.

    Google Scholar 

  86. Ntumngia FB, Pires CV, Barnes SJ et al (2017) An engineered vaccine of the Plasmodium vivax Duffy binding protein enhances induction of broadly neutralizing antibodies. Sci Rep 7:13779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chen E, Salinas ND, Huang Y et al (2016) Broadly neutralizing epitopes in the Plasmodium vivax vaccine candidate Duffy Binding Protein. Proc Natl Acad Sci U S A 113:6277–6282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fried M, Duffy PE (2015) Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine 33:7483–7488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Staalsoe T, Shulman CE, Bulmer JN et al (2004) Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. Lancet 363:283–289

    Article  CAS  PubMed  Google Scholar 

  90. Ndam NT, Denoeud-Ndam L, Doritchamou J et al (2015) Protective antibodies against placental malaria and poor outcomes during pregnancy, Benin. Emerg Infect Dis 21:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dechavanne S, Srivastava A, Gangnard S et al (2015) Parity-dependent recognition of DBL1X-3X suggests an important role of the VAR2CSA high-affinity CSA-binding region in the development of the humoral response against placental malaria. Infect Immun 83:2466–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Patel JC, Hathaway NJ, Parobek CM et al (2017) Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade. Sci Rep 7:7768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Doritchamou JY, Herrera R, Aebig JA et al (2016) VAR2CSA domain-specific analysis of naturally acquired functional antibodies to Plasmodium falciparum placental malaria. J Infect Dis 214:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chêne A, Houard S, Nielsen MA et al (2016) Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report. Malar J 15:476

    Article  PubMed  PubMed Central  Google Scholar 

  95. Janitzek CM, Matondo S, Thrane S et al (2016) Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses. Malar J 15:545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Thrane S, Janitzek CM, Matondo S et al (2016) Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J Nanobiotechnol 14:30

    Article  CAS  Google Scholar 

  97. Pusic K, Aguilar Z, McLoughlin J et al (2013) Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. FASEB J 27:1153–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karch CP, Doll TA, Paulillo SM et al (2017) The use of a P. falciparum specific coiled-coil domain to construct a self-assembling protein nanoparticle vaccine to prevent malaria. J Nanobiotechnol 15:62

    Article  CAS  Google Scholar 

  99. Radtke AJ, Anderson CF, Riteau N et al (2017) Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs25 vaccine candidate. Sci Rep 7:40312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Talaat KR, Ellis RD, Hurd J et al (2016) Safety and immunogenicity of Pfs25- EPA/Alhydrogel®, a transmission blocking vaccine against Plasmodium falciparum: an open label study in malaria naïve adults. PLoS One 11:e0163144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Crossey E, Frietze K, Narum DL et al (2015) Identification of an immunogenic mimic of a conserved epitope on the Plasmodium falciparum blood stage antigen AMA1 using virus-like particle (VLP) peptide display. PLoS One 10:e0132560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chia WN, Goh YS, Rénia L (2014) Novel approaches to identify protective malaria vaccine candidates. Front Microbiol 5:586

    Article  PubMed  PubMed Central  Google Scholar 

  103. Douglas AD, Williams AR, Knuepfer E et al (2014) Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. J Immunol 192:245–258

    Article  CAS  PubMed  Google Scholar 

  104. Makler MT, Ries JM, Williams JA et al (1993) Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48:739–741

    Article  CAS  PubMed  Google Scholar 

  105. Chan JA, Howell KB, Reiling L et al (2012) Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest 122:3227–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ghumra A, Khunrae P, Ataide R et al (2011) Immunisation with recombinant PfEMP1 domains elicits functional rosette-inhibiting and phagocytosis-inducing antibodies to Plasmodium falciparum. PLoS One 6:e16414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou J, Feng G, Beeson J et al (2015) CD14hiCD16+ monocytes phagocytose antibody-opsonised Plasmodium falciparum infected erythrocytes more efficiently than other monocyte subsets, and require CD16 and complement to do so. BMC Med 13:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jafarshad A, Dziegiel MH, Lundquist R et al (2007) A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcgammaRII and FcgammaRIII. J Immunol 178:3099–3106

    Article  CAS  PubMed  Google Scholar 

  109. Arnold L, Tyagi RK, Mejia P et al (2010) Analysis of innate defences against Plasmodium falciparum in immunodeficient mice. Malar J 9:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tsuji M, Ishihara C, Arai S et al (1995) Establishment of a SCID mouse model having circulating human red blood cells and a possible growth of Plasmodium falciparum in the mouse. Vaccine 13:1389–1392

    Article  CAS  PubMed  Google Scholar 

  111. Amaladoss A, Chen Q, Liu M et al (2015) De novo generated human red blood cells in humanized mice support Plasmodium falciparum infection. PLoS One 10:e0129825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wijayalath W, Majji S, Villasante EF et al (2014) Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria. Malar J 13:386

    Article  PubMed  PubMed Central  Google Scholar 

  113. Carter R, Ballou WR, Schneider I et al (1986) Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. Am J Trop Med Hyg 35:66–68

    Article  PubMed  Google Scholar 

  114. Cheng Q, Lawrence G, Reed C et al (1997) Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. Am J Trop Med Hyg 57:495–500

    Article  CAS  PubMed  Google Scholar 

  115. Engwerda CR, Minigo G, Amante FH et al (2012) Experimentally induced blood stage malaria infection as a tool for clinical research. Trends Parasitol 28:515–521

    Article  PubMed  Google Scholar 

  116. Payne RO, Milne KH, Elias SC et al (2016) Demonstration of the blood-stage Plasmodium falciparum controlled human malaria infection model to assess efficacy of the P. falciparum Apical Membrane Antigen 1 vaccine, FMP2.1/AS01. J Infect Dis 213:1743–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work on malaria vaccine development in the laboratory of CEC has been supported over the years by Department of Biotechnology (DBT), Government of India, Biotechnology Industry Research Advisory Council (BIRAC), PATH Malaria Vaccine Initiative, European Vaccine Initiative, and Institut Pasteur. AV was supported by a Marie-Curie Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan E. Chitnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vijayan, A., Chitnis, C.E. (2019). Development of Blood Stage Malaria Vaccines. In: Ariey, F., Gay, F., Ménard, R. (eds) Malaria Control and Elimination. Methods in Molecular Biology, vol 2013. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9550-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9550-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9549-3

  • Online ISBN: 978-1-4939-9550-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics