Skip to main content

Assessment and Rehabilitation after Traumatic Brain Injury Using Virtual Reality: A Systematic Review and Discussion Concerning Human-Computer Interactions

  • Chapter
  • First Online:
Virtual Reality for Psychological and Neurocognitive Interventions

Abstract

This chapter is a systematic review of the studies that have used virtual reality (VR) as an assessment or a rehabilitation tool of cognitive functions following traumatic brain injury (TBI). To be part of this review, publications must have collected data from individuals who have sustained a TBI, and must have been published between 1980 and 2017. A total of 32 publications were selected from a possible set of 254 articles that were identified in the following databases: Academic Search Complete, CINAHL, Computers & Applied Sciences, ERIC, MEDLINE, PsychINFO, FRANCIS, Psychological and Behavioural Sciences Collection. Most of the selected studies focused on the following cognitive functions: attention, memory and learning, spatial navigation, multitasking (including prospective memory and executive functions). In these studies, VR has been used for assessment/screening of cognitive impairments as well as for rehabilitation/remediation of cognitive dysfunction due to brain lesions. All the studies examined support the value and relevance of VR as an assessment and rehabilitation tool with individuals who have sustained a TBI. Moreover, VR seems to be an ecologically valid approach that has the potential of re-thinking neuropsychology regarding assessment and rehabilitation. In this way, since the virtual environment mimics everyday contexts, the possibility of improving cognitive function as well as facilitating generalizations in everyday living increases. However, it is important to pursue work (research & development) in this emergent field in neuropsychology in order to develop and to validate psychometrically these new assessment and rehabilitation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allain, P., Foloppe, D. A., Besnard, J., Yamaguchi, T., Etcharry-Bouyx, F., Le Gall, D., et al. (2014). Detecting everyday action deficits in Alzheimer’s disease using a nonimmersive virtual reality kitchen. Journal of the International Neuropsychological Society, 20(5), 468–477.

    Article  Google Scholar 

  • Anderson, T. M., & Knight, R. G. (2010). The long-term effects of traumatic brain injury on the coordinative function of the central executive. Journal of Clinical & Experimental Neuropsychology, 32(10), 1074–1082.

    Article  Google Scholar 

  • Ang, C. S., Zaphiris, P., & Mahmood, S. (2007). A model of cognitive loads in massively multiplayer online role playing games. Interacting with Computers, 19, 167–179.

    Article  Google Scholar 

  • Arvind Pala, P., N’Kaoua, B., Mazaux, J. M., Simion, A., Lozes, S., Sorita, E., et al. (2014). Everyday-like memory and its cognitive correlates in healthy older adults and in young patients with traumatic brain injury: A pilot study based on virtual reality. Disability and Rehabilitation. Assistive Technology, 9(6), 463–473.

    Article  CAS  Google Scholar 

  • Averbuch, S., & Katz, N. (2011). Cognitive rehabilitation: A retraining model for clients with neurological disabilities. In N. Katz (Ed.), Cognition, occupation, and participation along the life span. Neuroscience, neurorehabilitation and models for intervention in occupational therapy (3rd ed., pp. 277–298). Bethesda: AOTA Press.

    Google Scholar 

  • Bacim, F., Kopper, R., & Bowman, D. A. (2013). Design and evaluation of 3D selection techniques based on progressive refinement. International Journal of Human-Computer Studies, 71, 785–802.

    Article  Google Scholar 

  • Banville, F., & Nolin, P. (2012). Using virtual reality to assess prospective memory and executive functions after traumatic brain injury. Journal of Cybertherapy and Rehabilitation, 5(1), 45–55.

    Google Scholar 

  • Banville, F., Nolin, P., Cloutier, J., & Bouchard, S. (2007). Description of the virtual multitasking test (V-MT). Conférence présentée au Virtual Rehabilitation Conference: From Vision to Reality, Edmonton.

    Google Scholar 

  • Banville, F., Nolin, P., Lalonde, S., Henry, M., Dery, M.-P., & Villemure, R. (2010). Multitasking and prospective memory: Can virtual reality be useful for diagnosis? Behavioural Neurology, 23(4), 209–211.

    Article  Google Scholar 

  • Banville, F., Couture, J. F., Verhulst, E., Besnard, J., Richard, P., & Allain, P. (2017, July). Using virtual reality to assess the elderly: The impact of human-computer interfaces on cognition. In International conference on human interface and the management of information (pp. 113–123). Cham: Springer.

    Google Scholar 

  • Barrash, J., Tranel, D., & Damasion, H. (1993). Standardization and validation of a route learning test. Journal of clinical neuropsychologist, 15, 66.

    Google Scholar 

  • Besnard, J., Richard, P., Banville, F., Nolin, P., Aubin, G., Le Gall, D., et al. (2016). Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury. Applied Neuropsychology. Adult, 23(3), 223–235. https://doi.org/10.1080/23279095.2015.1048514.

    Article  Google Scholar 

  • Bisson, E., Contant, B., Sveistrup, H., & Lajoie, Y. (2007). Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyberpsychology & Behavior, 10(1), 16–23.

    Article  CAS  Google Scholar 

  • Bowman, D. A., Kruijff, E., LaViola, J. J., & Poupyrev, I. (2004). 3D user interfaces: Theory and practice. Redwood: Addison Wesley Longman Publishing Co., Inc..

    Google Scholar 

  • Caglio, M., Latini-Corazzini, L., D’agata, F., Cauda, F., Sacco, K., Monteverdi, S., et al. (2009). Video game play changes spatial and verbal memory: Rehabilitation of a single case with traumatic brain injury. Cognitive Processing, 10(Suppl2), S195–S197.

    Article  Google Scholar 

  • Caglio, M., Latini-Corazzini, L., D’Agata, F., Cauda, F., Sacco, K., Monteverdi, S., et al. (2012). Virtual navigation for memory rehabilitation in a traumatic brain injured patient. Neurocase (Psychology Press), 18(2), 123–131.

    Article  CAS  Google Scholar 

  • Canty, A. L., Fleming, J., Patterson, F., Green, H. J., Man, D., & Shum, D. H. K. (2014). Evaluation of a virtual reality prospective memory task for use with individuals with severe traumatic brain injury. Neuropsychological Rehabilitation, 24(2), 238–265.

    Article  Google Scholar 

  • Cassidy, J. D., Carroll, L. J., Peloso, P. M., Borg, J., von Holst, H., Holm, L., et al. (2004). Incidence, risk factors and prevention of mild traumatic brain injury: Results of the who collaborating centre task force on mild traumatic brain injury. Journal of Rehabilitation Medicine (Taylor & Francis Ltd), 36, 28–60.

    Google Scholar 

  • Chanquoy, L., Tricot, A., & Sweller, J. (2007). La charge cognitive: Théorie et application. Armand Collin éditeur.

    Google Scholar 

  • Chen, J., & Or, C. (2017). Assessing the use of immersive virtual reality, mouse and touchscreen in pointing and dragging-and-dropping tasks among young, middle-aged and older adults. Applied Ergonomics, 65, 437–448.

    Article  Google Scholar 

  • Christiansen, C., Abreu, B., Ottenbacher, K., Huffman, K., Masel, B., & Culpepper, R. (1998). Task performance in virtual environments used for cognitive rehabilitation after traumatic brain injury. Archives of Physical Medicine & Rehabilitation, 79(8), 888–892.

    Article  CAS  Google Scholar 

  • Cicourel, A. V. (2004). Cognitive overload and communication in two healthcare settings. Communication & Medicine, 1(1), 35–43.

    Article  Google Scholar 

  • Cooper, G. (1998). Cognitive load theory & instructional design at UNSW: Research into cognitive load theory and instructional design at UNSW [Electronic Version] from http://projects.ict.usc.edu/itw/materials/clark/UNSW.htm. Retrieved 2013-10-01.

  • Crosbie, J. H., Lennon, S., Basford, J. R., & McDonough, S. M. (2007). Virtual reality in stroke rehabilitation: Still more virtual than real. Disability & Rehabilitation, 29(14), 1139–1146.

    Article  CAS  Google Scholar 

  • Doolittle, P. E. (2002). Multimedia learning: Empirical results and practical applications. Paper presented at the Irish educational technology users’ conference, Carlow.

    Google Scholar 

  • Dvorkin, A. Y., Ramaiya, M., Larson, E. B., Zollman, F. S., Hsu, N., Pacini, S., et al. (2013). A “virtually minimal” visuo-haptic training of attention in severe traumatic brain injury. Journal of Neuroengineering and Rehabilitation, 10, 92–92.

    Article  Google Scholar 

  • Erez, N., Weiss, P. L., Kizony, R., & Rand, D. (2013). Comparing performance within a virtual supermarket of children with traumatic brain injury to typically developing children: A pilot study. OTJR: Occupation, Participation And Health, 33(4), 218–227.

    Google Scholar 

  • Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition and Emotion, 6, 409–434.

    Article  Google Scholar 

  • Fay, T. B., Yeates, K. O., Wade, S. L., Drotar, D., Stancin, T., & Taylor, H. G. (2009). Predicting longitudinal patterns of functional deficits in children with traumatic brain injury (English). Neuropsychology, 23(3), 271–282.

    Article  Google Scholar 

  • Feinberg, S., & Murphy, M. (2000). Applying cognitive load theory to the design of web-based instruction. In Professional Communication Conference. Proceedings of 2000 Joint IEEE International and 18th Annual Conference on Computer Documentation (IPCC/SIGDOC 2000).

    Google Scholar 

  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381–391.

    Article  CAS  Google Scholar 

  • Flanagan, S. R., Cantor, J. B., & Ashman, T. A. (2008). Traumatic brain injury: Future assessment tools and treatment prospects. Neuropsychiatric Disease and Treatment, 4(5), 877–892.

    Article  Google Scholar 

  • Fleming, J., Riley, L., Gill, H., Gullo, M. J., Strong, J., & Shum, D. (2008). Predictors of prospective memory in adults with traumatic brain injury. Journal of the International Neuropsychological Society, 14, 823–831.

    Article  Google Scholar 

  • Gamito, P., Oliveira, J., Pacheco, J., Morais, D., Saraiva, T., Lacerda, R., et al. (2010). Traumatic brain injury memory training: A virtual reality online solution. Proc. 8th International Conference Disability, Virtual Reality & Associated technologies. Vina del Mar/Valparaiso 31 Aug.-2 Sept. 79–84.

    Google Scholar 

  • Gonçalves, A., & Cameirão, M. (2016). Evaluating body tracking interaction in floor projection displays with an elderly population. Proceedings of the 3rd International Conference on Physiological Computing Systems, (PhyCS), 24–32.

    Google Scholar 

  • Grealy, M. A., Johnson, D. A., & Rushton, S. K. (1999). Improving cognitive function after brain injury: The use of exercise and virtual reality. Archives of Physical Medicine & Rehabilitation, 80(6), 661–667.

    Article  CAS  Google Scholar 

  • Greenwood, K. E., Morris, R., Smith, V., Jones, A. M., Pearman, D., & Wykes, T. (2015). Virtual shopping: A viable alternative to direct assessment of real life function? Schizophrenia Research, 172(1–3), 206–210.

    Google Scholar 

  • Groot, Y. C. T., Wilson, B. A., Evans, J., & Watson, P. (2002). Prospective memory functioning in people with and without brain injury. Journal of the International Neuropsychological Society, 8, 645–654.

    Article  Google Scholar 

  • Guo, Q., & Agichtein, E. (2008). Exploring mouse movements for inferring query intent. In 31st annual international ACM SIGIR conference on research and development in information retrieval (pp. 707–708). https://doi.org/10.1145/1390334.1390462.

    Chapter  Google Scholar 

  • Hoffman, S. W., Shesko, K., & Harrison, C. R. (2010). Enhanced neurorehabilitation techniques in the DVBIC assisted living pilot project. NeuroRehabilitation, 26(3), 257–269.

    Article  Google Scholar 

  • Inkpen, K. M. (2001). Drag-and-drop versus point-and-click mouse interaction styles for children. ACM Transactions on Computer-Human Interaction, 8(1), 1–33.

    Article  Google Scholar 

  • Jacoby, M., Averbuch, S., Sacher, Y., Katz, N., Weiss, P. L., & Kizony, R. (2013). Effectiveness of executive functions training within a virtual supermarket for adults with traumatic brain injury: A pilot study. IEEE Transactions On Neural Systems And Rehabilitation Engineering: A Publication Of The IEEE Engineering In Medicine And Biology Society, 21(2), 182–190.

    Article  Google Scholar 

  • Kinch, J., & McDonald, S. (2001). Traumatic brain injury and prospective memory: An examination of the influence of executive functioning and retrospective memory. Brain Impairment, 2, 119–130.

    Article  Google Scholar 

  • Kinsella, G., Murtagh, D., Landry, A., Homfray, K., Hammond, M., O’Beirne, L., Dwyer, L., Lamont, M., & Ponsford, J. (1996). Everyday memory following traumatic brain injury. Brain Injury, 10, 499–507.

    Article  CAS  Google Scholar 

  • Kinsella, G. J., Ong, B., & Tucker, J. (2009). Traumatic brain injury and prospective memory in a virtual shopping trip task: Does it matter who generates the prospective memory target? Brain Impairment, 10(1), 45–51.

    Article  Google Scholar 

  • Kizony, R., Levin, M. F., Hughey, L., Perez, C., & Fung, J. (2010). Cognitive load and dual-task performance during locomotion post-stroke: A faisability study using a functional virtual environment. Physical Therapy, 90(2), 252–260.

    Article  Google Scholar 

  • Kliegel, M., Eschen, A., & Thöne-Otto, A. I. T. (2004). Planning and realization of complex intentions in traumatic brain injury and normal aging. Brain and Cognition, 56, 43–54.

    Article  Google Scholar 

  • Knight, R. G., Harnett, M., & Titov, N. (2005). The effects of traumatic brain injury on the predicted and actual performance of a test of prospective remembering. Brain Injury, 19, 27–38.

    Article  Google Scholar 

  • Knight, R. G., Titov, N., & Crawford, M. (2006). The effects of distraction on prospective remembering following traumatic brain injury assessed in a simulated naturalistic environment. Journal Of The International Neuropsychological Society: JINS, 12(1), 8–16.

    Article  Google Scholar 

  • Kubota, Y., Yamaguchi, T., Harada, T., Verhulst, E., & Richard, P. (2016). Association between human error and heart rate variability in virtual reality-based IADL the preliminary study for MCI characterization proceeding: International workshop on advanced image technology (IWAIT). Penang.

    Google Scholar 

  • Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. Journal of Head Trauma Rehabilitation, 21(5), 375–378.

    Article  Google Scholar 

  • Larson, E. B., Ramaiya, M., Zollman, F. S., Pacini, S., Hsu, N., Patton, J. L., & Dvorkin, A. Y. (2011). Tolerance of a virtual reality intervention for attention remediation in persons with severe TBI. Brain Injury, 25(3), 274–281.

    Article  Google Scholar 

  • Lee, J. (2011). Attention functioning in children following mild closed head injury: The importance of prospective sampling. (72), ProQuest Information & Learning, US.

    Google Scholar 

  • Lengenfelder, J., Schultheis, J. T., Al-Shihabi, T., Mourant, R., & DeLuca, J. (2002). Divided attention and driving: A pilot study using virtual reality technology. Journal of Head Trauma Rehabilitation, 17(1), 26–37.

    Article  Google Scholar 

  • Livingstone, S. A., & Skelton, R. W. (2007). Virtual environment navigation tasks and the assessment of cognitive deficits in individuals with brain injury. Behavioural Brain Research, 185(1), 21–31.

    Article  Google Scholar 

  • MacKenzie, I. S., Sellen, A., & Buxton, W. (1991). A comparison of input devices in elemental pointing and dragging tasks. In Proceedings of the CHI `91 Conference on Human Factors in Computing Systems (pp. 161–166). New York: ACM.

    Google Scholar 

  • Man, D. W. K., Poon, W. S., & Lam, C. (2013). The effectiveness of artificial intelligent 3-D virtual reality vocational problem-solving training in enhancing employment opportunities for people with traumatic brain injury. Brain Injury: [BI], 27(9), 1016–1025.

    Article  Google Scholar 

  • Martin, C., & Nolin, P. (2009). La réalité virtuelle comme nouvelle approche évaluative en neuropsychologie: L’exemple de la classe virtuelle avec des enfants ayant subi un traumatisme cranio-cérébral. A.N.A.E. Approche Neuropsychologique des Apprentissages chez l’Enfant, 21(101), 28–32.

    Google Scholar 

  • Martínez-Pernía, D., Nú ñez-Huasaf, J., del Blanco, A., Ruiz-Tagle, A., Velásquez, J., Gomez, M., Robert Blesius, C., Ibañez, A., Fernández-Manjón, B., & Slachevsky, A. (2017). Using game authoring platforms to develop screen-based simulated functional assessments in persons with executive dysfunction following traumatic brain injury. Journal of Biomedical Informatics, 74, 71–84.

    Article  Google Scholar 

  • Matheis, R. J. (2004). Expanding the boundaries of neuropsychology: The application of vr for memory assessment. (64), ProQuest Information & Learning, US.

    Google Scholar 

  • Matheis, R. J., Schultheis, M. T., Tiersky, L. A., DeLuca, J., Millis, S. R., & Rizzo, A. (2007). Is learning and memory different in a virtual environment? The Clinical Neuropsychologist, 21(1), 146–161.

    Article  Google Scholar 

  • Mathias, J. L., & Mansfield, K. M. (2005). Prospective and declarative memory problems following moderate and severe traumatic brain injury. Brain Injury, 19, 271–282.

    Article  CAS  Google Scholar 

  • Mayer, R. E. (2001). Multimedia learning (pp. 403–405). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • McGeorge, P., Phillips, L. H., Crawford, J. R., Garden, S. E., Della Sala, S., Milne, A. B., et al. (2001). Using virtual environments in the assessment of executive dysfunction. Presence: Teleoperators & Virtual Environments, 10(4), 375–383.

    Article  Google Scholar 

  • Mioni, G., Rendell, P. G., Henry, J. D., Cantagallo, A., & Stablum, F. (2013). An investigation of prospective memory functions in people with traumatic brain injury using virtual week. Journal of Clinical & Experimental Neuropsychology, 35(6), 617–630.

    Article  Google Scholar 

  • Mioni, G., Stablum, F., Biernacki, F., & Rendel, P. G. (2015). Virtual week: Translation and adaptation for the Italian population. Neuropsychological rehabilitation, Nov. (2), 1–21.

    Google Scholar 

  • Morganti, F. (2004). Virtual interaction in cognitive neuropsychology. Studies in Health Technology and Informatics, 99, 55–70.

    Google Scholar 

  • Morris, R. G., Kotitsa, M., Bramham, J., Brooks, B., & Rose, F. D. (2002). Virtual reality investigation of strategy formation, rule breaking and prospective memory in patients with focal prefrontal neurosurgical lesions. Proceedinds 4th international conference disability, virtual reality and association technology, Hungry, 101–108.

    Google Scholar 

  • Nelson, B. C., & Erlandson, B. (2008). Managing cognitive load in educational multi-user virtual environments: Reflection on design practice. Education Technology Research Development, 56, 619–641.

    Article  Google Scholar 

  • Nolin, P., Martin, C., & Bouchard, S. (2009). Assessment of inhibition deficits with the virtual classroom in children with traumatic brain injury: A pilot-study. Annual Review of Cybertherapy and Telemedicine, 7, 240–242.

    Google Scholar 

  • Nolin, P., Stipanicic, A., Henry, M., Joyal, C. C., & Allain, P. (2012). Virtual reality as a screening tool for sports concussion in adolescents. Brain Injury, 26(13/14), 1564–1573.

    Article  Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory. New York: Plenum Press.

    Google Scholar 

  • Paas, F., Tuovinen, J. E., Tabbers, H., & Gerven, P. W. M. V. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71.

    Article  Google Scholar 

  • Pietrzak, E., Pullman, S., & McGuire, A. (2014). Using virtual reality and videogames for traumatic brain injury rehabilitation: A structured literature review. Games for Health Journal, 3(4), 202–214.

    Article  Google Scholar 

  • Pinkston, J. B., Santa Maria, M. P., & Davis, R. D. (2000). Long-term outcome following moderate traumatic brain injury at age 3 months. Brain and Cognition, 44(1), 71–74.

    Article  Google Scholar 

  • Pratt, D. R., Zyda, M., & Kelleher, K. (1995). Virtual reality: In the mind of the beholder. IEEE Computer, 28(7), 17–19.

    Google Scholar 

  • Rand, D., Basha-Abu Rukan, S., Weiss, P. L., & Katz, N. (2009). Validation of the virtual MET as an assessment tool for executive functions (English). Neuropsychological Rehabilitation, 19(4), 583–602.

    Article  Google Scholar 

  • Renison, B., Ponsford, J., Testa, R., Richardson, B., & Brownfield, K. (2012). The ecological and construct validity of a newly developed measure of executive function: The virtual library task. Journal Of The International Neuropsychological Society: JINS, 18(3), 440–450.

    Article  Google Scholar 

  • Rizzo, A. A., Buckwalter, J. G., Bowerly, T., Van Der Zaag, C., Humphrey, L., Neumann, U., et al. (2000). The virtual classroom: A virtual reality environment for the assessment and rehabilitation of attention deficits. Cyberpsychology & Behavior, 3(3), 483–499.

    Article  Google Scholar 

  • Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. Cyberpsychology & Behavior, 8(3), 241–262.

    Article  Google Scholar 

  • Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation Psychology, 46, 296–311.

    Article  Google Scholar 

  • Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741.

    Article  Google Scholar 

  • Shum, D., Valentine, M., & Cutmore, T. (1999). Performance of individuals with severe long-term traumatic brain injury on time-, event-, and activity-based prospective memory tasks. Journal of Clinical and Experimental Neuropsychology, 21, 49–58.

    Article  CAS  Google Scholar 

  • Shum, D., Fleming, J. M., & Neulinger, K. (2002). Prospective memory and traumatic brain injury: A review. Brain Impairment, 3(1), 1–16.

    Article  Google Scholar 

  • Skelton, R.W., Bukach, C.M., Laurance, H.E., Thomas, K.G.F., & Jacobs, W.J. (2000). Humans with traumatic brain injuries show place-learning deficits in computer-generated virtual space. Journal of clinical and experimental neuropsychology, 22(2), 157–175.

    Google Scholar 

  • Skelton, R.W., Ross, S.P., Nerad, L., & Livingstone, S.A. (2006). Human spatial navigation deficits after traumatic brain injury shown in the arena maze, a virtual Morris water maze. Brain Injury, 20(2), 189–203.

    Google Scholar 

  • Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: A functional MRI study. Experimental Brain Research, 202(2), 341–354.

    Article  Google Scholar 

  • Smith, R. E. (2003). The cost of remembering to remember in event-based prospective memory: Investigating the capacity demands of delayed intention performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 347–361.

    Google Scholar 

  • Sohlberg, M.M., & Mateer, C.A. (1987). Effectiveness of an attention-training program. Journal of Clinical and Experimental Neuropsychology, 9, 117–130.

    Google Scholar 

  • Sohlberg, M. M., & Mateer, C. A. (2001). Cognitive rehabilitation: An integrative neuropsychological approach. New York: Guilford.

    Google Scholar 

  • Sorita, E., N’Kaoua, B., Larrue, F., Criquillon, J., Simion, A., Sauzéon, H., et al. (2013). Do patients with traumatic brain injury learn a route in the same way in real and virtual environments? Disability and Rehabilitation, 35(16), 1371–1379.

    Article  Google Scholar 

  • Sosin, D. M., Sacks, J. J., & Webb, K. W. (1996). Pediatric head injuries and deaths from bicycling in the United States. Pediatrics, 98(5), 868–870.

    Article  CAS  Google Scholar 

  • Steed, A., & Parker, C. (2005). Evaluating effectiveness of interaction techniques across immersive virtual environmental systems. Presence: Teleoperators and Virtual Environments, 14, 511–527.

    Article  Google Scholar 

  • Tarr, M. J., & Warren, W. H. (2002). Virtual reality in behavioural neuroscience and beyond. Nature Neuroscience, 5(11), 1089–1092.

    Article  CAS  Google Scholar 

  • Thompson, H. J., McCormick, W. C., & Kagan, S. H. (2006). Traumatic brain injury in older adults: Epidemiology, outcomes, and future implications. Journal of the American Geriatrics Society, 54(10), 1590–1595.

    Article  Google Scholar 

  • Titov, N., & Knight, G. (2005). A computer-based procedure for assessing functional cognitive skills in patients with neurological injuries: The virtual street. Brain Injury, 19(5), 315–322.

    Article  CAS  Google Scholar 

  • Tsirlin, I., Dupierrix, E., Chokron, S., Coquillart, S., & Ohlmann, T. (2009). Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: Review and analysis. Cyberpsychology & Behavior, 12(2), 175–181.

    Article  Google Scholar 

  • Vaishnavi, S., Rao, V., & Fann, J. R. (2009). Neuropsychiatric problems after traumatic brain injury: Unraveling the silent epidemic (English). Psychosomatics (Washington, DC), 50(3), 198–205.

    Google Scholar 

  • Verhaeghe, S., Defloor, T., & Grypdonck, T. (2005). Stress and coping among families of patients with traumatic brain injury: A review of the literature. Journal of Clinical Nursing, 14, 1004–1012.

    Article  Google Scholar 

  • Verhulst, E., Richard, P., Richard, E., Allain, P., & Nolin, P. (2016). 3D interaction techniques for virtual shopping: Design and preliminary study. In Proceedings of the 11th joint conference on computer vision, imaging and computer graphics theory and applications (GRAPP 2016) (pp. 271–279).

    Google Scholar 

  • Verhulst, E., Banville, F., Richard, P., Tabet, S., Lussier, C., & Massicotte, E. (2017a). Navigation patterns in ederly during multitasking in virtual environnment. In S. Yamamoto (Ed.), Human Interface and the management of information: Supporting learning, decision-making and collaboration. HIMI 2017. Lecture notes in computer science (Vol. 10274). Cham: Springer.

    Google Scholar 

  • Verhulst, E., Foloppe, D., Richard, P., Banville, F., & Allain, P. (2017b). A new 2D interaction-based method for the behavioural analysis of instrumental activities of daily living. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (pp. 146–151).

    Chapter  Google Scholar 

  • Wouters, P., van Nimwegen, C., van Oostendorp, H., & van der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249–265.

    Article  Google Scholar 

  • Zhang, L., Abreu, B. C., Masel, B., Scheibel, R. S., Christiansen, C. H., Huddleston, N., & Ottenbacher, K. J. (2001). Virtual reality in the assessment of selected cognitive function after brain injury. American Journal of Physical Medicine & Rehabilitation, 80(8), 597–604.

    Article  CAS  Google Scholar 

  • Zhang, L., Abreu, B. C., Seale, G. S., Masel, B., Christiansen, C. H., & Ottenbacher, K. J. (2003). A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: Reliability and validity. Archives of Physical Medicine & Rehabilitation, 84(8), 1118–1124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Banville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banville, F., Nolin, P., Rosinvil, T., Verhulst, E., Allain, P. (2019). Assessment and Rehabilitation after Traumatic Brain Injury Using Virtual Reality: A Systematic Review and Discussion Concerning Human-Computer Interactions. In: Rizzo, A.“., Bouchard, S. (eds) Virtual Reality for Psychological and Neurocognitive Interventions. Virtual Reality Technologies for Health and Clinical Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9482-3_15

Download citation

Publish with us

Policies and ethics